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In future electrical grids, high levels of Variable Renewable Energy (VRE) penetration including solar photovoltaics 
(PV) and wind energy is expected. This poses a challenge in system operation and planning especially in balancing 
electricity demand and supply. This paper examines figures of merit for wind and solar integration in electricity grids. 
Quantitative tools such as load duration curves, correlation analyses, and the Fourier transform were used to study the 
intermittency/variability of wind and solar PV power. Time series data on power production from the European Network of 
Transmission System Operators for Electricity (ENTSO-E), and Réseau de Transport d'Électricité (RTE) were used for the 
analyses. The analyses illustrate that despite the valuable amount of energy that can be obtained from wind and solar PV, 
these energy sources cannot be used as baseload power supply. Solar PV power is available for approximately 50% of the 
time year-round. Wind power output on the other hand can reach very small magnitudes of just a few megawatts several 
times in a year. More to that, wind is positively correlated over long distances, even exceeding 3000 km and aggregating 
wind fleets over a large geographic area might not guarantee continuous availability of wind power. Nonetheless, these 
sources can still be integrated in electricity grids in high proportions, provided intermittency mitigation options such as 
energy storage, curtailment, and demand-response are implemented. 
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Introduction 
The integration of Variable Renewable Energy 

(VRE) such as wind power and solar photovoltaics 
(PV) in electricity grids poses a unique set of benefits 
and challenges. It can reduce transmission and 
distribution line losses, increase grid resilience, lower 
generation costs, and reduce requirements to invest in 
new utility generation capacity. Distributed PV and 
wind systems can also mitigate reliability issues 
experienced in developing areas by providing standby 
capacity capable of offering stable power during times 
of poor power quality.1 As automation of transport 
(e.g., fully electric cars) as well as heat (e.g., thermal 
pumps) gains popularity, global energy consumption is 
expected to grow even faster.2 Recurrent energy 
shortage and reliance on fossil fuels are key 
geopolitical challenges that will influence the future of 
the energy sector.3 Implementation of Renewable 

Energy Sources (RES) on a Large Scale is among the 
most viable solutions to those problems.4 Because 
of their possibilities and abundance practically 
everywhere on the earth, wind and solar photovoltaic 
(PV) are by far the most exciting renewable energy 
sources.5 On the other hand, RES does have its own 
series of challenges.6 The foregoing are the most 
pressing energy issues: (1) transmission loss 
(intermittency), (2) availability, which varies across 
time and space, and (3) non programmability, because 
their output is climate dependent and cannot be 
planned, though it can be projected.7 They face cost 
threat from conventional sources of energy generation, 
such as fossil fuel-fired power stations, from an 
economic standpoint.8 Electrical Energy Storage (EES) 
with VRE integration has been presented as a potential 
solution to RES energy challenges, decreasing the 
effect of transitioning from conventional power 
generation sources and paving the way for a 
considerable increase in RES integration into overall 
production percentage. 
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However, being an intermittent energy source, 
VRE cannot always provide electricity when required, 
making it highly volatile. It therefore creates a 
challenge in balancing electricity demand and supply. 
To integrate these sources in grids, measures need to 
be taken to ensure that demand is always equal to 
supply to maintain grid stability. If demand is more 
than supply, there will be a drop in frequency  
and if supply is more than demand, there will be an 
increase in frequency. This is dangerous to the 
electrical network because the system components are 
designed to work at a frequency of 50 Hz (or 60 HZ 
in the case of the USA), with a tolerance level of ±0.5 
Hz and any frequency deviations out of these limits can 
damage the network equipment, leading to grid 
failure. 

This paper therefore examines figures of merit for 
wind and solar integration in electricity grids. First, 
several quantitative tools such as Load Duration 
Curves, Autocorrelation Function, Probability Density 
Function, and Fast Fourier Transform have been  
used to quantify the intermittency of VRE. Then, 
intermittency mitigation options such as energy 
storage, demand-response, and curtailment have been 
discussed.  
 

 
Methodology 

The analyses were carried out using the open data 
published by the European Network of Transmission 
System Operators for Electricity (ENTSO-E), and 
Réseau de Transport d'Électricité (RTE), which is the 
French TSO. The data platforms provide data points 
on power generation and consumption in Coordinated 
Universal Time, UTC. RTE provides data restricted to 
France, whereas ENSTO-E provides data for all 
member states of the European Union. The analyses 
were carried out using time series data from the year 
2014 to 2018. 

To avoid any misleading outcomes in the analyses 
of the time series data, the below-mentioned actions 
were carried out: 
 All the data sets were proofread before including 

them in the analysis. 
 No alterations were carried out on the data points 

except on the solar PV data from RTE which had 
some data points with negative values (−2 or −1) 
between the period UTC 00:00 to UTC 06:00. 
Solar PV power output is supposed to be zero 
during this period because there is no sunlight. 
Consequently, the values were replaced by zeros.  

The countries whose data on wind and solar PV 
were accessible on the ENTSO-E transparency 
platform and have been used in the analyses include 
France, Belgium, Spain, Denmark, Norway, Poland, 
Estonia, Finland, Latvia, Lithuania, and Romania. 
Also, in order to carry out spatial correlation analysis, 
the distance between the wind fleets of each pair of 
countries was approximated to the shortest air travel 
distance between the pair of countries using Google 
maps. These data have been used to construct several 
figures of merit on wind and solar PV integration in 
electricity grids. 
 
Results and Discussion 
 
Load Duration Curves (LDC) of Wind and Solar PV 

A Load Duration Curve (LDC), also known as a 
demand frequency distribution curve is a graph that 
expresses the relationship between time and demand 
by showing the percentage of time demand is greater 
or equal to a certain level.9 A flat load duration curve 
will mean a more consistent and hence easier to 
accommodate load throughout the year. However, it 
does not directly account for the variations that occur 
in the time series because the data points are sorted in 
the order of decreasing magnitudes. An LDC, 
therefore, seeks to answer the inquiry as to whether 
increasing the capacity of installed VRE can increase 
the aggregate minimum power output. This is because 
the annual minimum power output of VRE reflects 
the permanently available aggregate power output 
(secured capacity) by which conventional power plant 
capacity can be reduced permanently.10 

Solar energy, being intermittent in nature follows a 
diurnal cycle. That is, it is available for approximately 
50% of the time year-round. The LDC of solar PV in 
France for the years 2014 to 2018 is shown in Fig. 1. 
Over the years, the percentage of time for which solar 
PV is available stays the same because the cycle does 
not change every year. However, the power generated 
is increasing each year (around 10% per year). 
Between 2014 and 2018, the total installed solar 
capacity in France had risen from 5660 MW to 9466 
MW. This increase in installed capacity led to an 
increase in the power that can be produced via solar 
PV. Therefore, while the generating capacity 
increases, the power production from solar PV 
increases as well.  

Normalizing the power output of solar PV to its 
average annual value gives Fig. 2. From this figure, 
for about 34% of the time, solar PV power output is 
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greater than its mean value, even reaching magnitudes 
of over 500%. Therefore, in periods of its availability, 
solar PV is a valuable source of energy to be 
exploited. 

For the same installed capacity, wind farms can 
produce more power than solar PV because wind can 
be available all round the clock, while solar PV power 
is only available when there is sunlight. Therefore, the 
capacity factor of wind is often higher than that of 
solar PV. Capacity factor refers to the ratio of the 
average power generated to the rated power over a 
given period of time. For example, in 2017, the 
capacity factor of solar PV in France was 14.9%, 
while that of wind was 21.6%.(11) The LDC of  
wind power in France from 2014 to 2018 is shown in 
Fig. 3. Within this period, the installed wind power 
capacity had risen from 9,285 MW to 15,108 MW.  
It can be observed in the LDC that an increase in the 
installed capacity of wind power increases the power 
that can be produced from it. However, the minimum 
wind power output in France does not change much. 
The minimum output power was 26 MW in 2014, 21 

MW in 2015, 53 MW in 2016, 62 MW in 2017, and 
83 MW in 2018. Therefore, increasing the installed 
wind power capacity cannot reduce the conventional 
dispatchable power plant capacity to a perceptible 
level. 

Some interesting observations can also be seen by 
normalizing the LDC of wind power output to its 
annual average value as shown in Fig. 4. About 38% 
of the time, wind power output was greater than its 
mean annual value from 2014 to 2018, reaching 
magnitudes of even 420% in 2017. However, the 
magnitude by which the normalized power output was 
greater than its annual mean value is not proportional 
to the installed capacity. Despite the increase in 
installed wind power capacity from 2014 to 2018, the 
maximum value by which wind power output was 
more than its annual mean fluctuated from 380% in 
2014, 350% in 2015, 320% in 2016, 420% in 2017, 
and 380% in 2018. Also, the percentage of time wind 
power output was more than its mean annual value 
remained constant at 38% for all the years. Therefore, 
increasing the installed capacity of wind power will 

 
 

Fig. 1 — Load duration curve for solar PV in France 
 

 
 

Fig. 2 — LDC of solar PV in France normalised to annual mean value 
 

 
 

Fig. 3 — LDC of wind power in France 
 

 
 

Fig. 4 — LDC of wind power in France normalised to annual
mean value 
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not increase the percentage of time the power output 
is more than its mean annual value and consequently 
no guarantee that there will be continuous availability 
of wind power that could serve as baseload and 
replace the conventional dispatchable power plant 
capacity permanently. 
 
Cumulative Distribution Function (CDF) of Wind Power 

The frequency distribution of the power output of 
VRE can be studied by mapping the cumulative 
distribution of the time series data to the power 
output, normalised to its nominal capacity.12 The 
Cumulative Distribution Function (CDF) is generally 
used to specify the distribution of multivariate random 
variables. In this analysis, it helps us to study the 
variation of wind power output in relation to its 
installed capacity. 

The cumulative distribution versus the power 
output normalized to the nominal capacity at year-end 
of the French wind fleet is shown in Fig. 5. It is worth 
noting that the highest Capacity Factor (CF) was 
reached in the year 2015 (23%) while the lowest CF 
was recorded in 2016 (19.7%) even though the 
installed capacity of wind fleet in 2016 was higher. 
The CF corresponds to the ratio of the mean power 
output to the nominal capacity. For a CDF value of 
80%, France’s wind fleet produced up to 35% of the 
nominal capacity in 2015, while in 2017, only 30% of 
the nominal capacity was achieved. That is, the 
probability that the French wind fleet produced power 
less than or equal to 35%, and 30% of its nominal 
capacity in 2015 and 2017 respectively was 80%. It is 
therefore evident that CF does not correspond to the 
increasing installed rated capacity, but varies mainly 
due to the wind conditions throughout the year. 

It is also worth noting that the power output from 

wind does not follow the Gaussian or normal 
distribution function as shown in Fig. 6. Low power 
outputs occur more frequently than high power 
outputs. µ and σ represent the mean and standard 
deviation respectively. 
 
Autocorrelation Function of Wind and Solar PV Power 

Autocorrelation functions have been previously 
used in renewable energy-related research to 
determine the importance of daily and yearly cycles in 
wind speed and temperature profiles. Autocorrelation 
helps to observe how fast the data changes and shows 
how well-correlated a signal is with itself under 
different lag times.13 The analysis of autocorrelation  
is a mathematical tool for finding repeating  
patterns. This is very important for the optimization of  
demand management, storage optimization, and data 
acquisition of such systems.14 The output power of 
wind turbines is stochastic due to intermittent wind 
gusts and turbulences. This causes additional 
interactions with the electrical grid and affects the 
voltage quality. The power of photovoltaic systems is 
variable due to alternating clouds. The jumpy 
characteristic of renewable sources decreases when 
increasing the spatial size over which the renewable 
energies are harvested.15 Pearson’s product-moment 
based autocorrelation function r(l) dependent on time 
lag (l) can be calculated with the following equation: 

 

 𝑟ሺ𝑙ሻ ൌ
∑ ሺ௫ି௫̅ሻሺ௫శభି௫̅ሻ
ಿషభ
సభ

∑ ሺ௫ି௫̅ሻమ
ಿ
సభ

    … (1) 
 

where, l is the lag, which is the time distance 
between pairs of values in the analysed time series, 𝑥 
are the values and �̅� is the mean of the time series. 

The autocorrelation function of solar PV in  
France for the year 2018 plotted using Pearson’s 
autocorrelation function is shown in Fig. 7. From the 

 
 

Fig. 5 — Cumulative distribution of wind power normalized to
nominal capacity at year-end in France 

 
 

Fig. 6 — Frequency distribution of wind power output of the
French wind fleet in 2018 



NNODIM et al.: FIGURES OF MERIT FOR WIND & SOLAR PV INTEGRATION IN GRIDS  
 
 

353 

graph, the autocorrelation of solar PV varies 
sinusoidally. The PV output, follows the diurnal cycle 
as expected. The autocorrelation function keeps a 
memory of the past. i.e. by knowing the value of the 
autocorrelation function at any given time, it is 
possible to predict the value at some future time with 
a high degree of accuracy. 

The autocorrelation functions of wind power in 
France are shown in Fig. 8. The autocorrelation of 
wind power is high (≥ 0.7) for the first 720 minutes 
(24 × 30), i.e. half a day. The function follows an 
exponentially decaying pattern as the coefficient falls 
from 1 to 0 but starts oscillating in an irregular pattern 
around the zero-coefficient point with an increase in 
time. The autocorrelation analysis for different years 
produces similar results, with wind power having a 
weak autocorrelation coefficient as time increases. 
Such an exponentially decaying autocorrelation does 
not have a memory of the past. It will therefore be 
very difficult to forecast the magnitude of wind power 
output some days ahead, by knowing the present 
value of the autocorrelation coefficient.  

Spatial Correlation of Wind Power 
Correlation mathematically explores the 

relationship between the observed values of a pair of 
variables. In this analysis, we seek to evaluate 
whether and to what extent the cumulative time series 
for the hourly power output of a pair of national wind 
fleets correlate spatially (depend on the mean 
distance between them). 

The parameters may just have a positive 
relationship, which means that when one variable's 
value rises, so does the value of the other. Additionally, 
the relationship can be negative, implying that when 
one variable's value rises, the values of the others fall. 
Lastly, the relationship could be neutral, implying that 
the factors are unrelated. Correlation is a statistic that 
ranges from −1 to 1 for totally negatively correlated 
and perfectly positively correlated data, respectively. 
The "correlation coefficient" is the term used to 
describe the calculated correlation. Standard methods 
like Pearson's correlation can be used to calculate the 
relationship between two variables with Gaussian 
distributions. This approach, however, will not work 
with data which do not possess a Gaussian distribution. 
Rank correlation approaches must be utilized instead. 
Methods that measure the relationship between 
variables that use the ordinal association between the 
variables than about the exact values are referred to as 
rank correlation. Ordinal data consists of data with 
labelled values and an ordering or ranking relationship, 
such as 'low, medium, and high.16 Rank correlation can 
be calculated for real-valued variables. This is done by 
first converting the values for each variable into rank 
data. This is where the values are ordered and assigned 
an integer rank value. The link seen between pair 
ranked values can then be quantified using rank 
correlation coefficients. Rank correlation approaches 
are referred to as nonparametric correlation since no 
distribution for such variables is inferred.17 

The spatial correlation analysis carried out here is 
based on time series data of hourly electricity power 
generation from wind power in 11 EU countries and 
the mean distance between the countries for 2018. 
The total number, n, of possible pairs of country 
combinations can be calculated from the number, x, 
of countries as follows: 

 

𝑛 ൌ ൫௫ଶ൯ ൌ
௫!

ሺ௫ିଶሻ!ଶ!
      … (2) 

 

In the case of 11 countries, we have 55 possible 
country pairs and 55 mean distances between the 
national wind fleets, which has been approximated in 

 
 

Fig. 7 — Autocorrelation function of solar PV in France 
 

 
 

Fig. 8 — Autocorrelation of wind power output in France 
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this case as the mean aerial distance between the 
countries.  

In this analysis, Spearman’s rank correlation 
procedure which is resistant to outliers was used 
because wind power does not follow the Gaussian 
distribution. Using Google Maps, the mean aerial 
distance between each pair of countries was 
determined. The plot of the spearman rank correlation 
coefficient rS versus the mean aerial distance between 
each pair of countries is depicted in Fig. 9. Latvia and 
Lithuania with a mean aerial distance of 196 km 
between them, have the highest spearman rank 
correlation coefficient of 0.743. All the countries with 
a mean distance of less than 500 km between them 
have a correlation coefficient greater than 0.5. The 
correlation coefficients can be approximated by a 
trendline which decreases exponentially with increase 
in distance. The trendline has an R-squared value of 
0.706. R-squared is a statistical measure of how close 
the data are to the fitted regression line. It is also 
known as the coefficient of determination, which 
ranges from 0 to 1, with 1 being the best value. 

Apart from the Estonia – Romania pair which have 
a correlation coefficient of −0.007, with a mean 
distance of 1,408 km between them, all the pair of 
countries are positively correlated. The power outputs 
of the national wind fleets of individual neighbouring 
countries develop in a largely synchronised manner, 
and so smoothing effects can barely be identifiable or 
are limited if the wind fleets are aggregated as 
illustrated for example in Fig. 10 and Fig. 11. 
 

Fourier Transform 
Even though correlation analyses provide 

information on the variability and predictability of 

VRE, they do not give sufficient information on 
frequency and periodicity. The frequency spectrum 
obtained using Fourier Transforms can provide 
valuable information on the periodicity of VRE. 
Fourier Transforms are a series of equations that 
transform the signal from its original domain (time 
and space) to a representation in the frequency 
domain. This is done by computing a sequence of 
discrete Fourier transforms (DFTs) through various 
algorithms such as the fast Fourier transform. The 
equation for the 1D Discrete Fourier Transform is 
depicted below: 

 

𝑋ሺ𝑘ሻ ൌ ∑ 𝑥ሺ𝑛ሻ𝑒ିଶగ/ேேିଵ
ୀ    ... (3) 

 

The continuous-time signal x(n) is sampled every n 
second to obtain the discrete-time signal X(k), where 
k is the current frequency (0 Hz to N-1 Hz). Discrete 
Fourier transforms (DFT) are computed over a sample 

 
 

Fig. 9 — Spearman rank correlation coefficient rs as a function of 
the mean distance between national wind fleets for 11EU 
countries, calculated on the basis of hourly power time series in 
2018 

 
 

Fig. 10 — Normalised hourly power output time series of a pair of 
wind fleets in the EU with positive Spearman rank correlation 
(rs=0.700) in 2018 
 

 
 

Fig. 11 — Normalised hourly power output time series of a pair of 
wind fleets in the EU with negative Spearman rank correlation 
(rs=−0.007) in 2018 
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window of N samples, which can span between the 
entire signal or a portion of it. By finding the Fourier 
Transform of time series data and plotting the power 
spectrum, the periodicities and amplitudes of the 
frequency components can be found. 

The FFT spectrum of solar PV power in France for 
the year 2018 is shown in Fig. 12. The dominant 
signal has a frequency of 0/day and an amplitude of 
2.4 A.U. This dominant signal does not give any 
information about the periodicity of solar PV power 
because it is not periodic. However, being the 
dominant signal, it means that a large part of solar PV 
power is aperiodic and unpredictable. Nonetheless, 
the greater proportion of the frequency spectrum is 
periodic. The second dominant signal has a frequency 
of 1/day with an amplitude of 1.9 A.U. This 
corresponds to a period of 1 day (24 hours). Also, the 
third dominant signal has an amplitude of 0.8 A.U, 
and a frequency of 2/day, which translates to a period 
of 12 hours. Therefore, solar PV power variation in 
each day is similar to that in another, at least 
qualitatively.  

The FFT spectrum of wind power in France in 
2018 is shown in Fig. 13. The dominant signal has a 
frequency of 0/day and an amplitude of 6.8 A.U. This 
dominant signal does not give any information about 
the periodicity of wind power because it is not 
periodic. Also, most of the power spectrum is 
concentrated at this frequency. This implies that 
despite the intermittent nature of wind power, it is 
persistent and always available, at least on a 
qualitative basis. The remainder of the spectrum is 
made up of indistinguishable and continuous 
frequency components with peaks that are less than 
0.7 A.U. This is due to the continuous variability of 
wind power. 

Wind and Solar Integration and Impact of 
Flexibility Options 

So far, the variability/intermittency of VRE has been 
discussed. It is evident that VRE is not dispatchable 
and requires probabilistic techniques to forecast the 
power output, which can lead to significant errors. 
From a technical perspective, two things need to be 
ensured: a balance between instantaneous load and 
generation (generation side), as well as transmission 
and distribution (network side).  

Several flexibility mechanisms to deal with the 
variability/intermittency of VRE exist. These include: 
the use of demand-side, storage, grid extensions, 
curtailment, and dispatchable generationresponse.18 
When VRE is available in surplus, the surplus 
electricity can be stored in stationary batteries or 
electric vehicles. Other forms of storage include 
pumped hydro plants, where the excess power is used 
to pump and store water in a damp uphill, which can 
then be used to produce electricity when needed. 
Also, the surplus power can be used in the electrolysis 
of water to produce hydrogen (green hydrogen) or 
synthetic methane, which are increasingly being 
considered as alternative fuels to substitute fossil 
fuels. Curtailment could be thought of as the polar 
opposite of flexible dispatchable generation. Curtailment 
is essential once instantaneous VRE generation 
surpasses original demand in order to maintain supply-
demand balance. The impacts of probable net-demand 
peak reduction and curtailment on the VRE system 
are examined in this section. Hourly time series data 
of power demand in France as well as solar PV and 
wind power output in 2018 were used for the analysis. 
During this year, solar PV provided 2.1% and wind, 
5.76% of the total electricity requirements. This 
implies that the energy mix between solar PV and 
wind was 26.7% solar PV and 73.35% wind. The term 

 
 

Fig. 12 — Fast Fourier Transform (FFT) of solar PV in France 

 
 

Fig. 13 — FFT of wind power in France 
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residual demand refers to the original demand less  
the possibility of VRE generation. The interaction 
between the demand pattern and power supply for 
systems with high shares of VRE is a crucial issue 
which needs to be considered. 

The Fig. 14 shows the actual daily average demand 
(in blue) as well as the residual demand. If wind 
power is boosted to a proportion of 36% (in green) or 
80% (in red), provided that all wind energy can all be 
collected into the system. As illustrated in the figure, 
36% of wind and solar PV integration does not 
require curtailment, and the curve hits 0 net-demand 
line once. Increasing the percentage of wind and solar 
PV integration above 36% will lead to negative net 
demand values. For example, 80% of wind and solar 
PV penetration in the system achieved negative values 
of net demand several times throughout the year.  
This implies that a surplus of VRE is available and 
curtailment, storage, or upward demand-response is 
needed. Also, there are moments when the residual 
demand almost reached the original demand — which 
translates to a very small wind power output. These 
events point to use of standby generation, a downward 
demand-response strategy or storage. 

Apart from variability/intermittency, there are 
several other challenges for the integration of VRE in 
electricity grids. Despite their ability to reduce 
transmission line losses and increase grid resilience 
by decongesting the transmission grid, they can also 
create transmission congestion. Wind farms are often 
far away from industrial or residential areas and 
consequently, the power produced from wind needs to 
be transported over long distances to consumption 
sites. Finding an optimal size for such a transmission 
network can be complicated. Periods of peak power 
production do not occur most of the time, and thus, 

investing in transmission infrastructure to accommodate 
these periods might not be economical because a large 
fraction of the transmission capacity will not be used 
most of the time. On the other hand, under-sizing the 
transmission line will lead to transmission congestion 
during periods of peak power production and 
consequently, power curtailment might be the only 
option. 

Another challenge with integrating VRE into the 
electric grid is the absence of inertia. Wind and solar do 
not contribute to the inertia of the grid. Inertia is very 
important to maintain grid stability. All the generators in 
the power system rotate at the same frequency, thereby 
acting as a barrier against abrupt changes in frequency. 
When power demand spikes, the frequency begins to 
reduce, and vice versa when power demand decreases. 
The grid's large spinning mass works as a shock 
absorber, slowing the rate of change. There is no rotating 
mass in solar PV. Even enormous wind turbines are fed 
to the network via a frequency converter, which prevents 
the rotating mass's kinetic energy from acting as inertia 
throughout moments with frequency change.19 As a 
result, as inertia declines, unexpected variations in 
frequency induced by changes in electrical production or 
consumption become faster and greater, making 
maintaining grid frequency within its own operational 
limits more challenging.20–28 
 

Conclusions 
From the load duration curves, solar PV power is 

available for about 50% of the time in a year which 
can be accounted for by the diurnal cycle. Wind 
power on the other hand can be available throughout 
the year, though with very small magnitudes during 
some periods depending on weather/seasonal patterns. 
The autocorrelation function of solar PV power output 
keeps the memory of the past. Hence, solar PV power 
output can be predicted with a high degree of 
accuracy.  

The intermittency/variability of wind and solar can 
be mitigated by the use of demand-side response, 
storage, grid extension, curtailment, and dispatchable 
generation. High shares of wind and solar PV power 
can be integrated in existing grids without the need 
for curtailment.  

Neither the load duration curve, autocorrelation 
function, nor Fourier transform could give 
comprehensive information on the intermittency of 
wind and solar PV. Therefore, a more comprehensive 
tool is required to model the behaviour of these 
variable renewable energy sources. 

 

Fig. 14 — Average net daily demand for wind and solar
integration in France in 2018 
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