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Mobile Crowdsensing (MCS) is frequently utilized for computation assignments, but it is particularly useful for sensing 
complicated environments. Previously, the MCS platform spent a lot of time and effort establishing incentive mechanisms 
and task assignment algorithms to encourage mobile users to participate. In actuality, because of their sensing environment 
and other participants' methodologies, MCS participants face numerous uncertainties, and it is unknown how they interact 
with one another and make sensing decisions. This study uses the perspectives of MCS participants to develop a web 
detection arrangement that will maximize their payoffs through MCS participation. Self-adaptive cellular automata-based 
Markov decision process exhibits interactions among mobile clients and detecting contexts. With the help of Self-Adaptive 
Support Learning (SASL) and Cellular Automata (CA), we developed a novel method that uses the ideal detecting technique 
for each client to improve the predicted payoff against random detecting scenarios in a stochastic multi-agent environment. 
With distinct dynamic sensing, the SASL and CA based smart Crowdsensing enhances user’s payoff, as shown in the 
simulation. 
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Introduction 
Mobile crowdsensing (MCS) has been widely used 

to collect data from smart devices all around the 
world. Mobile devices are frequently equipped 
with a variety of sensors that can be used for a variety 
of social and commercial functions, including 
activity tracking, environmental monitoring, social 
intelligence, and e-commerce.1 

A standard MCS framework outsources minor 
detecting tasks to many gadget clients to focus on 
sensing data and control of mobile devices. Members 
of mobile crowdsensing face significant 
vulnerabilities because of the detecting environment 
and how it interacts with the MCS benefit supplier 
and other members.2 

One of the key challenges in MCS is how to imitate 
diverse clients' interest in detecting programs, because 
detecting chores use assets and increase members' 
charges. As a result, extraordinary efforts have been 
made to plan motivating force components for MCS 
selection. Using the Stackelberg diversion method, a 
motivating component was planned. A switch sells off 
advertising greater flexibility in picking astutely 
experienced members has been used with three online 

motivating force instruments.3 Another fundamental 
problem is determining how to assign errands to 
members based on detecting differences.

The current assessment has been focused on the 
MCS benefit provider assignment. Different types of 
MCS tasks, as well as delay-tolerant and time-
sensitive assignment have been used to model a 
worker choice system.5 

The researchers created a multi-objective 
optimization issue to address a multi-task determination 
issue.6 The issue of detecting assignment task has 
moreover been considered in portable social systems and 
a web task assignment calculation was outlined 
employing a greedy technique.7 

Detecting errands is typically associated with 
distinct places and MCS members under time 
constraints which makes the optimum job allocation 
problem NP-hard. Using approximation calculations, 
a pleasant errand allotment arrangement with a 
demonstrated surmised percentage was revealed.8 

Members of the MCS face a variety of instabilities 
that influence their decisions due to stochastic 
detecting conditions, for example, members are 
contemplating similar detecting strategies that can be 
used to distinguish detected data. The financial 
outcomes rewarded by the benefit provider are based 
not just on the benefit provider's claim efforts, but 
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also on the choices of other members. In any event, 
most of the prior study2–8 relied on the platform, and 
members' vulnerabilities and rapidly changing 
situations were not considered. 

Neither a poor decision approach will not deliver 
sufficient payoffs to members, nor the benefit 
provider will be able to obtain high-quality sensed 
MCS data. Furthermore, considering participants’ 
views and making excellent decisions could be an 
analytical assignment for using MCS in a certain 
process. This phenomenon is not limited to participant 
learning, user inclinations, or alternative options,9 but 
it also considers how to establish a series of optimum 
detecting choices from the perspective of the 
participants, especially in vulnerable situations. 

Reinforcement learning (RL) is a subset of machine 
learning algorithms that is linked to several types of real-
time control scenarios.10 The Deep RL approach is used 
to make motion planning in a random environment in an 
automated manner.11 A single-agent RL is studied 
planned incentives for mobile crowd sensing 
participants,12 and the researchers simulated support 
machine learning calculations that maximizes the use of 
a battery.13 However, RL is not very useful in a multi-
agent system scenario, which is common in many real-
time problems, such as mobile crowd sensing, because 
individual members have distinct natures and 
preferences.14 

In addition to the preceding strategies focusing on the 
information preparation stage, it is also possible to split 
categories based on the applications listed in Table 1. 

Contributions 
We use self-adapted Markov decision processes 

and cellular automata to model the behaviour of 
mobile crowd sensing users in this study. Each client 
cannot observe the decisions of others but must pick 
its level of exertion in detecting activities based on 
surrounding data, such as its own record of detected 
signal quality. In that setting, agents make decisions 
based on the environment's dynamical behaviour or 
uncertainty, which are accompanied with payoffs. 
Using SASL and CA, a novel algorithm for "smart 
crowdsensing" has been presented. We focused on the 
most important works in specific fields: 
1. We consider the perspectives of participants to 

design an optimum system for determining the 
endeavours that will maximize participants' payoffs. 

2. We are working on a web based MCS 
computation, specifically self-adaptive Crowd 
sensing. Deep RL was used to memorize the 
method of mobile crowd sensing assistance. 

3. We presented algorithms in various stochastic and 
random scenarios, which affects how mobile 
crowd sensing members are compensated for a set 
of crowdsensing assignments. 

 
Crowdsensing Architecture 

With the help of sensing the dynamical 
environment and users' decision payoffs, we define 
the Crowdsensing architecture analytically. 
 
Analytical Formulation of MCS 

For the analytical formulation, the authors 
considered N different users as well as a service 
provider. Users and service providers can 
communicate in two ways (as appeared in Fig. 1). 
Every user has the capacity to acquire or detect data 
in a specific range or zone for a specific time window. 

Table 1 — List of Crowdsensing and Sensing technologies, 
together with collected data 

Ref. Technology Data Type Application 

17 
Redundancy in 
Software n/w 

Image 
Disaster 
management 

18 Scalability analysis Mobile data Property modelling 

19 
Redundancy 
reduction 

Mobile data Humidity, Pressure 

20 
Comparison of meta 
data 

Image, Video 
Disaster 
management 

21 
Optimization 
algorithm 

Air Pollution  
data 

Cost effective  
data 

22 
Kinetic energy  
(KE) algo 

KE Energy Allocation 

23 
Redundancy 
reduction 

Text Paraphrasing 

24 Data compression Questionnaire 
Dimension 
reduction 

25 Spatial-Temporal GPS data City mobility 
26 Pattern Recognition Mobile data Sensor stream 

27 
Comparison of meta-
data 

Image 
Image 
crowdsensing 

 
Fig. 1 — Schematic diagram of Mobile crowd sensing
Architecture to optimize Users’ payoff 
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In this study, an MCS architecture was used to 
handle a discrete and definite time t = 1......T, as well 
as a total number of users N, who are equipped with 
various sensors and are responsible for sensing 
information for the service provider. 

The service provider recognizes MCS information 
and provides Rt (Time-Dependent) rewards to each 
user based on the cost of the user's effort. 

Add up all the interested customers' efforts to 
collect data and allocate a portion of Mt based on 
commitment to the entire MCS data, which will be 
analysed later in this section. 
 

Analytical formulation of User behaviour 
Each client (i) considers an exertion effort zi, and 

the detected information provided to the service 
provider in a specific time range (0 to t) to participate 
in an MCS assignment. This performance can be 
measured in terms of user expenses. Every client will 
also receive an award determined by the benefit 
supplier based on the quality of the identified data. 

We also get the concepts zt = [z1...zN] and mt = 
[m1……mN], which represent the total effort and 
collected Reward at each time instant, whereas Zi is 
the set of possible effort for operator i. 

Following the introduction of the degree of esteem 
of data (EoD), we discuss the idea of quality of data 
(QoD) Si(t), which is a real valued quantity that 
indicates how much quality information has been 
discovered by users at a specific time instant t. St = 
[s1(t)……sN(t)] represents the QoD for all users, with 
Oi representing the feasible effort of user i. 

The mobility of users is a major concern in MCS 
architecture; because of this mobility, there is 
variance in the information collected, hence Si(t) may 
be random or stochastic in character for the time slot 
and regularly unpredictable. Simultaneously, we may 
calculate the user effort, which is equal to Si(t) Zi(t). 
According to the calculations, the user is unable to 
determine the impact of other users' efforts on 
themselves, and each user considers his or her own 
work autonomous. 
 

Sensing or Payoff Cost 
In addition, discovering fetched cost, the 

remuneration from the benefit supplier determines 
user i′s payback. The reward is determined using the 
following formula in Eq. (1): 

 

𝑚ሺ𝑡ሻ ൌ
௭ሺ௧ሻ.௦ሺ௧ሻ

ఀ௭ೕሺ௧ሻ.௦ೕሺ௧ሻ
𝑀ሺ𝑡ሻ  … (1) 

where j refers to the number of users from 1 to N. 

Because this reward is proportionate to the EoD at 
each time step, the participation cost or user i's work 
should be subtracted from the overall reward while 
calculating the payment cost. Participation is required. 
The user wi (t) cost or effort is computed as follows in 
Eq. (2): 

 

𝑤ሺ𝑡ሻ ൌ 𝐾 𝑍ሺ𝑡ሻ … (2) 
 

where Ki >=0 and Ki is determined by the amount of 
effort exerted by distinct users. 
 

The Payoff cost of the user will be shown in Eqs 
(3) & (4): 

 

𝜉ሺ𝑡ሻሾሺ𝑍ሺ𝑡ሻ, 𝑆ሺ𝑡ሻሿ ൌ 𝑚ሺ𝑡ሻ െ  𝑤ሺ𝑡ሻ … (3) 
 

𝜉ሺ𝑡ሻሾሺ𝑍ሺ𝑡ሻ, 𝑆 ൌ
௭ሺ௧ሻ.௦ሺ௧ሻ

ఀ௭ೕሺ௧ሻ.௦ೕሺ௧ሻ
𝑀ሺ𝑡ሻ െ  𝐾 𝑍ሺ𝑡ሻ … (4) 

 
Optimization of Payoff Cost 

The payback cost was calculated with a user-
centric perspective in mind. Our goal in this study is 
to find a sequential choice of Zi (t) that includes the 
discounted payoff, resulting in a total discounted 
payoff cost Ꝋ  ሺ𝑡ሻby Eq. (5): 

 

Ꝋ  ሺ𝑡ሻ ൌ 𝛴µሺ𝑡ሻ 𝜉ሺ𝑡ሻ … (5) 

 
where µi = [0, 1] and is labelled as user i's discount 
factor 

There are two key flaws with the prior method 
for determining zi(t). Because there is no 
knowledge of payoff functions throughout the 
learning and training process, it is difficult to  
make a crowd sensing decision in an unknown or 
random setting. The first issue is that users are 
arranged in a random fashion in an unknown or 
stochastic environment, and there is a large space 
state for the users' effort and detecting 
environment, limiting the effectiveness of present 
algorithms that predict accuracy for future detecting 
environments. The second challenge is that 
modelling user behavior in a random environment 
is challenging. For example, if one user puts out 
effort zi(t), this will have an impact on the payoff of 
other users and play a role in determining future 
decisions. As a result, we have adopted machine 
learning techniques, which will self-learn to 
consider the selected effort and different QoD in a 
stochastic environment. 
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Methodology 
In this section, we will show how to solve the 

problem of multi-agent self-adapting support learning, 
which can regulate a hybrid stochastic environment 
(both static and discrete time). The SASL is used to 
solve the single agent crowd sensing problem. The 
main issue, however, is multi-agent crowd sensing in 
a stochastic environment with mobile users. Every 
user is unaware of the efforts of others. SASL is 
amplified using cellular automata calculations, and we 
are working on a new Smart Crowd-sensing 
technique. The innovative approach may 
simultaneously discover detecting endeavours for 
each member in a variety of dynamical detecting 
settings. 

In traditional Markov decision models, we are just 
as interested in the stochastic choice that considers 
previous states and activities. Normal expansion of 
Markov decision models to the multi-agent situation 
with self-adapting learning could be used to determine 
the payoffs of Mobile Crowdsensing users. 
 
Analytical Formulation 

We are looking at a collection of activities Y1...Yn 
as well as a set of detected QoD levels N1......Nn for 
the whole system. 

Each step state is equal to N1 x N2 .... x…Nn. 
We are going to define QoD and Sensing Effort 

functions, Transition function for sensing the 
environment in Eq. (6): 
 

f: Nଵ ൈ  Nଵ … … N୬ ൈ  Yଵ ൈ … Y → Nଵ … N୬ … (6) 
 

Reward for Each Participant is represented by  
Eq. (7): 
 

R୧: Nଵ ൈ  Nଵ … … N୬ ൈ  Y୧ → R  … (7) 
 

Self-adapting learning tries to autonomously tune 
the parameters of policy Ꝋi (t) in a multi-agent 
Markov decision model. The loss function for 
optimization is used to provide self-adapting learning 
in Eq. (8). 
 

JሺꝊ ୧ ሻ ൌ ሺY െ QሺS, Zሻሻଶ … (8) 
 

and Y can be defined by Eq. (9). 
 

Y ൌ ξ   µሺMAXሻሺQሺS୲ାଵ; Z୧ାଵሻ … (9) 
 

The following constraints were considered while 
converting a single agent framework to a multi-agent 
framework:  
1. Each member can monitor both collective effort 

activities zt and collective reward profiles mt in 
the training section. 

2. During testing, each team member can use their 
own set of data, such as QoD observations for 
specialists. 

3. No special communication computations between 
members about their detection tactics are 
expected. 

4. Each participant may be exposed to random and 
stochastic QoD elements (shown in Fig. 2). 

To detect isolated Q for each specialist using 
available si, zi and expanding the SASL and defining 
the settings of multi agent crowd sensing, Because the 
nature of the environment will be dynamic from the 
perspective of each MCS user, the pay out of one user 
will influence the payoff of another. Any user would 
be unaware of this modification. As a result, RL (Q-
Learning)15,16 is not the best method for memorizing 
dynamic conditions, and the Q function can upgrade 
freely with self-adapting learning for each member. 

Although it is possible to include all agent 
selections [z1…...zN] as SASL table/network inputs 
during the preparation handle to help update the Q 
function with self-adaption, it is not recommended. 
Because, just one agent will be working during the 
testing phase, Q learning will be unable to perform on 
continuous activities such as the effort levels shown 
in Fig. 3. 

 
Fig. 2 — QoD dynamics for different Dynamic signals for
simulation: (a) Sinusoidal, (b) Linear, (c) Markov chain 
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Fig. 3 — Architecture of Multi-agent Self adopting Learning 
 
Self-adaptive Learning with Cellular Automata: 
Smart Crowdsensing 

We employ the actor-critic network instead of the 
Q learning technique in this part since the Q learning 
technique fails to adapt to the multi-agent stochastic 
environment. As a result, the two neural networks 
have been used in the actor-critic network model. The 
πꝊ(i) has learned actor policies for every MCS user, 
and QꝊ(i) has learned critic policies. 

In this paradigm, the critic network serves as a Q 
network in a deep Q network, and the actor network 
serves as an inference network for the deep Q 
network, which may be directly mapped from input 
states to maximize effort. We use the output of critic 
network. for delivering a better effort level actor 
network uses the feedback loss of the critic network 
and adjusts the weights of actor neural network based 
on that feedback during the training phase. 

Once the actor neural network has been trained, the 
actor network will provide the actions directly at the 
time of testing; no critic network inputs are required; 
only actor network inputs are required. We introduced 
user interaction in the critic part, and the feedback 
output feeds to the actor network, resolving the issue 
of user interaction. 
 
Cellular Automata 

In the MCS architectural network, the cellular 
automata (CA) model has been employed to aid the 
network in forming new arrangements depending on 
the present and prior states. Users' payoffs were used 
as states in the MCS architectural network, which 
alluded to the user's sensory environment. 

Because the framework is a mix of static and 
dynamic environments, CA was employed to model 
it. As a result, predicting crowd sensing behaviour in 
terms of cellular automata is more appropriate. All 
crowdsensing metrics were predicted to be in a binary 
state of development (z, m, QoD). The parameters 
might be either static or dynamic. Therefore, the 
twofold arrangement of binary no (0,1) has been 
considered for all users. Consider 0 for the static 
component and 1 for the dynamic component. 

We are looking at three components, each of which 
has two states; thus, the total number of states is 23 = 8. 
CAs demonstrate how consumers' behaviour changes 
over time. the state expectations is given by Eq.10. 
 

𝑃 ൌ 𝑃ଵ … … … 𝑃   … (10) 
 

S(t) – Current State 
S — All discrete states that can be imagined. 
From the previous two states, Eq. 11 was applied to 

predict the future state. 
P: A discrete variable with a finite set of states. 
 

𝑃ሺ𝑡  1ሻ ൌ 𝑃ሺ𝑡ሻ.𝑃ሺ𝑡 െ 1ሻ  … (11) 
 

Consider the states’ S= 1 to 8, which means we 
should expect 8 distinct states in this case. We treated 
eight distinct states as eight neighbours in our study. In 
the case of user effort, Eq. 11 is the state prediction. In 
Fig. 4 a representation of rules is given. The 8 states are 
illustrated with the self-adaptive algorithm's 
interchangeable behaviour. The SASL's adaptive nature 
is enhanced by the cellular Automata. Different 
scenarios have taken care of changing the states of the 
hyperparameters, so optimising the reward payoffs with 
higher adaptability will be beneficial. 

 
 

Fig. 4 — Transition behaviour of Users’ effort in dynamic
environment based on Cellular Automata 
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After that, policy gradient return computations 
were utilized to update the Network represented by 
Eqs (12) & (13): 

 

∆Ꝋ𝐽ሺꝊሻ ൌ ∆Ꝋ𝜋Ꝋሺ𝑖ሻሺ𝑆௧ି … … 𝑆௧ሻ∆Ꝋ𝑄Ꝋሺ𝑖ሻ൫𝑆  ,𝑍ଵ … …𝑍ே൯… (12) 
 

𝑍 ൌ  𝜋Ꝋሺ𝑖ሻሺ𝑆௧ି … … 𝑆௧ሻ  … (13) 
 

Smart Crowdsensing is represented by Algorithm1 
which employs self-adaptive learning and cellular 
automata. 

 

Results and Discussion 
To simulate the Smart Crowd Sensing Algorithm, 

different sensing environments and characteristics 
were used. To learn the detecting policy over effort 
level, four groups of actor-critic networks were built 
for four different MCS users. For the actor-critic 
neural network, a two-layer fully associated neural 
network was used. The window side (K) has been 
considered for training and testing purposes, and it 
can vary depending on the experimental setup. 

K is also used to indicate how much genuine QoD 
data (st……st(K)) has been incorporated into the 
actor-critic network. Normal batch normalization and 
weight update procedures were utilized during the 
training period. The training has been completed up to 
T=50 steps, and each user's payoffs have been 
calculated up to T=50 steps. 

 

The simulation results for four participants with 
sinusoidal QoD flow are illustrated in Figs 5 & 6. The 
graph depicts the average payoffs as a function of 
time (episodes). The mean values were discovered 
after 10 simulation runs. The four users that used the 
window length K displayed the same learning 
behaviors. All users require knowledge of the QoD 
aspects as well as other users' preferred designs. 

 
 

Fig. 5 — Sinusoidal Training Dynamics for all users (agent 1, 2) 
 

 
 

Fig. 6 — Sinusoidal Training Dynamics for all users (agent 3, 4) 
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That is why the plots show negative payoffs at the 
start of the training, implying that the service provider 
did not deliver sufficient rewards to the users at the 
start of the training and did not begin to adopt a 
suitable approach on zi. These payoffs may stabilize 
as more training happens, indicating that the weights 
of the neural network are stabilizing. 

When K varies from 10 to 50 in the simulation 
part, every user receives bigger payoffs, so we can 
deduce that the smart crowdsensing method will 
operate better when it finds more accurate past data. 
When we raise the value of K= 50 to 100, the 
previous data become less useful in determining 
optimal sensing policies. Increasing the value of K 
makes training the neural network for these windows 
more computationally intensive. 

The normal obtained awards for four distinct types 
of users after four different forms of Dynamic QoD 
were applied in certain time steps (episodes) 
following the training (Table 2). The simulation of a 
blend of QoD dynamics is shown in Figs 7 & 8. We 
found that at K=50, we received the greatest optimal 

values of crowd sensing payoffs for our experimental 
setup. 

We also compare our method to the usual model-
predictive control (MPC)28–30 which is employed for 
resource allocation and optimal control. To get the 
expected optimal sensing actions at each timestep, we 
fit each agent a local model for the reward dynamics 
and solve the MPC with fixed T. The average 
outcomes for SASL, where each agent trains an 
independent actor-critic learner to learn its own 
sensing judgments, are also treated as a baseline 
learner. In this design, there is no consideration for 
agent communication or coordination. 

In all situations, the MPC delivers solutions with 
substantially smaller rewards than the SASL 
algorithms, as demonstrated in Table 3. We 
discovered that under mixed sensing dynamics, the 
policy discovered using MPC has a negative payoff. 
This is achievable because MPC uses each agent's 
single observation to guide each agent to attain 
smaller rewards with high sensing costs. 

Our proposed approach is also used to implement a 
larger-scale MCS challenge.29 As illustrated in Fig. 8, 
as more training episodes are applied, the average 
reward for the 4-agent and 8-agent cases both 
converge. It requires fewer samples to train an 
effective RL decision maker with a reduced number 
of agents. 

However, because a multi-agent actor-critic SASL 
has been trained, the local learning-based agent can 
use the knowledge provided by the critic to make 

Table 2 — Testing Rewards for Four users varying with value K 

Memory Length 10 30 50 100 
Linear 47.37 49.86 51.02 49.65 
Sinusoidal 29.67 26.78 39.12 29.06 
Markov 36.11 39.71 43.26 41.98 
Mixed 21.71 36.12 39.10 26.74 
 

 
 

Fig. 7 — Mixture of linear, Sinusoidal, Markov Training 
Dynamics for all users (agent 1, 2) 

Table 3 — Comparison with MPC and SASL 
Memory Length MPC SASL 
Linear 1.62 23.65 
Sinusoidal 0.63 25.98 
Markov 1.14 12.65 
Mixed −40.43 10.76 

 

 
 

Fig. 8 — Participants' rewards for training episodes in the MCS 
(Boxplot) 
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cooperative decisions. More intriguingly, the MPC 
agent performs the poorest on the mixture of QoI 
dynamics, presumably because the linear model is 
unable to discover a good representation of system 
dynamics, while the local agents are not cooperating 
effectively. 

Because of the dynamic environment, users' 
mobility and sensing capabilities changing over time, 
three forms of heterogeneous QoD dynamics have 
been used. In this case, QoD temporal evolution has 
been modelled using sine dynamics, linear dynamics, 
and Markov dynamics (shown in Fig. 9). By assessing 
parameters amplitudes (A), frequencies (F), and 
transition frameworks for diverse MCS users, 
framework aspects have been made more challenging 
for a novel algorithm of smart crowdsensing. We also 
allowed for the possibility of a negative signal to 
avoid erroneous and false information. 
 

Conclusions 
This study has explored the engagement of MCS 

participants and the difficulty of selecting the sensory 
effort to maximize the payout for each user. First, 
because participants are confronted with random 
detecting scenarios, complex communications, as well 
as MCS members, the issues of simulating and 
decision-making have been solved. Then, for smart 

Crowdsensing, we propose a self-adaptive learning 
with cellular automata computation that can employ 
the control of a deep SASL with a Markov decision 
model to effectively discover the best detecting choice 
for each member in real time. Simulations in various 
obscure detecting conditions validate our innovative 
smart Crowdsensing technique. We will also 
investigate benefit providers component plan and 
MCS members' decision-making in future study, and 
test our ideas using real-world crowdsensing data. 

For this investigation, some constraints were 
considered.  

1. The authors' tests are limited to fourQoD signals. 
2. The MCS's social contact was not considered in 

this study. 
3. The experimental work did not consider the 

relationship between the service provider and the 
MCS worker. 

4. Third-party attacks are not considered when 
calculating the balance, profit, and so on. 

Real-time MCS data, as well as the integration of 
various types of QoD, will be studied in the future. In 
the future, the relationship mechanism between the 
service provider and the MCS worker could be 
examined to improve the algorithm's effectiveness. 
The cellular automata in this study only investigated 
three states; however, more states could be considered 
in the future to attain more effective results. 
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