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It is imperative to build an automatic underwater object recognition system in place to reduce the costs of underwater 
inspections as well as the associated risks. An effective method of detecting underwater objects from underwater images of 
aquatic after enhancing them using the Image Super-resolution technique is proposed in this study. The proposed approach 
comprises of two major sections, Underwater Image Enhancement, and Object detection. To enhance the underwater 
images, a lightweight Reduced Cascading Residual Network (RCARN) is proposed that imposes the Image Super-resolution 
technique. Later, the enhanced images generated by the RCARN model are supplied for the object detection process, where 
a significant object detection model, YOLOv3 is employed in this study. To improve its performance, this YOLOv3 is 
trained on one of the largest datasets, the COCO data, followed by being fine-tuned using enhanced Underwater images. The 
dataset utilized in this work contains 6 classes of underwater objects namely dolphin, jellyfish, octopus, seahorse, starfish, 
and turtle. All these images are actual real field images collected from various sources. With this proposed approach, a better 
overall ACS and mAP of 95.44% and 75.33% are achieved here, which are improved by ~8.75% and ~15%, respectively 
when compared to actual collected low-resolution images. 
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Introduction 
As you get closer to a particular depth, underwater 

images degrade in contrast, become blurry, and suffer 
from color distortion. The restoration and 
enhancement of underwater images have therefore 
become challenging.1–3 Light propagating through 
water is absorbed and reflected, which influences 
underwater imaging. As an example, the internal 
optical property (IOP) of water measures the amount 
of light that the water absorbs. Depending on their 
wavelengths, the colors of light diminish as water 
depth increases.  

A high-resolution image has a higher pixel density 
and contains more information about the original 
scene. In addition, in computer vision applications, 
high resolution is prevalent in pattern recognition and 
image analysis for better performance. Because of the 
blurring, poor contrast, and uneven illumination that 
affect underwater images, computer vision 
applications find it challenging to classify objects. To 
overcome the problems, enhancing the quality of the 
input image is done by using Super Resolution 
Technique. Through a technique known as super-

resolution (SR), low-resolution images are merged to 
create high-resolution images.4,5

Guo et al. suggested a multiscale dense Generative 
Adversarial Network (GAN) for enhancing the 
underwater image through a mapping of non-distorted 
images to distorted ones using a nonlinear method.6 
The core component of this proposed generator was a 
multiscale dense block that facilitates better 
utilization of feature maps for improvising the quality 
of enhanced images, which was the inspiration for our 
work. Using deep learning techniques, Yeh et al. 
developed a method for removing haze from images, 
which combines Multi-Scale Residual Learning 
(MSRL) with image decomposition.7 The key idea 
gathered from this was utilizing multiscale residual 
connection on a U-Net model for mapping the hazy 
and haze-free base components, resulting in that haze 
from images being removed. 

The Soft Edge assisted Network (SeaNet) 
developed by Fang et al. is designed for 
reconstructing images with high-quality SR with the 
help of the image soft-edges.8 The key idea of this 
proposed work was that, instead of increasing the 
models’ depth, the authors integrated the images’ 
prior knowledge into the model. The limitation of this 
approach was that, it requires a feature engineering 
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process, which is more challenging with low-
resolution underwater images. 

In deep learning, a model learns explicitly from 
text, image, sound, or images to perform tasks and 
can achieve incredible accuracy, sometimes more than 
performance at the human level.9 The main benefits of 
using deep learning are that they allow feature 
engineering to be done on its own as well as helps to 
improve performance.10,11 Observable faults that are 
difficult to train can be detected with the aid of deep 
learning, such as minimal product labeling errors, etc. 
It is hard to interpret unstructured data for most 
machine learning algorithms, which means it remains 
less used, and this is actually where deep learning is 
effective. 

However, for image recognition12, detection and 
localization13, segmentation, classification14, and so on, 
a neural network of one or more convolutional layers is 
used that is termed as Convolutional Neural Network 
(CNN).15 They are composed of neurons, where each 
neuron has a weight and bias that can be trained. 
Predicting a single label requires a classification task. 
Various real-time tasks require more than one class 
label to be predicted. Therefore, this suggests that it is 
not mutually exclusive to class names or class 
membership. These tasks are defined as multiple-label 
classification or, for short, multi-label classification,16 
This task is also called an object detection task.  

The process of detecting objects is a crucial task in 
computer vision. Object detection tells us the precise 
position of objects in an image, while image 
classification identifies what the image is. The 
pathway to achieve this involves training an encoder 
to produce a bounding box and associated class 
probabilities for each object in an image. YOLO is 
one of the significant deep learning-based object 
detection models, that can identify objects by using 
only one look. It is a regression-based object detection 
approach, which divides every image into multiple 
grid cells to detect objects, where every grid cell 
generates numerous bounding boxes, their confidence 

values, and class probabilities. YOLO is successful 
because it has a high degree of accuracy and also can 
run in real-time.17,18 

Malhotra et al. illustrated a comparison among the 
well-renowned approaches of R-CNN, Fast R-CNN, 
and YOLO to achieve object detection with its 
architectures.19 Real-time detections cannot be 
accomplished by either RCNN or Fast RCNN, while 
real-time classification can be achieved by YOLO 
with reasonable speed. In this study, the images in the 
dataset are directly used without any image 
enhancement. Fang et al. developed a Tiny-YOLOv3 
model to reduce the computational complexity of the 
actual YOLO model.20 Based on its experimental 
results; Tinier-YOLO is more efficient than tiny 
YOLOv3 but performs worse than MobileNet SSD. 
The image enhancement process was not employed in 
this study prior to the model’s training since the 
training data were of sufficient clarity. 

The efficient method of attaining the models’ 
significant performance in a shorter training period 
with lesser training is the transfer learning technique. 
The key idea of work of the authors Garcia-
Dominguez et al. was to construct an accurate CNN-
based classification model on smaller instances 
dataset with the transfer learning technique.21 Huo et 
al. proposed a multi-class classification model for 
searching and rescuing drowning victims.22 The 
authors improvised their proposed model’s accuracy 
to 97.76% by employing the pre-trained CNN layers 
in their model. 
 
Materials and Methods 

The primary objective of the proposed approach is 
to build a computer vision system using a deep 
learning-based object detection model to classify and 
detect the objects in underwater images accurately. 
The workflow of this proposed approach is visualized 
in Fig. 1. Under the pre-processing section, initially, 
the images in the dataset are brought into the 
augmentation process to increase the dataset 

 
 

Fig. 1 — The work-flow of the proposed Under Water Objects Detection approach 
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instances. Later, these augmented images are applied 
for the image enhancement process to resolve the 
problem associated with the low resolution of 
underwater images. The underlying deep learning 
model for detecting the objects is trained initially 
using one of the larger datasets, the COCO dataset, 
followed by fine-tuning using these enhanced images. 
As a final step, the trained Object Detection model is 
utilized for detecting the objects in the unseen 
underwater images. 
 
Data Preprocessing 

A dataset is considered the fuel for constructing a 
successful Deep Learning (DL) model. The dataset 
utilized in this work contains six classes, namely, 
dolphin, jellyfish, octopus, seahorse, starfish, and 
turtle. The instances for these six classes are collected 
from various sources. Building an accurate DL model 
always demands huge data/images since feature 
engineering is done on its own. But, in many cases, it 
is hard to make a huge instance dataset, and the 
available data is also not sufficient to obtain a good 
performing DL model. Similarly, in this case, 
collected images are not sufficient to make a 
successful model, and further, the number of instances 
among the classes is imbalanced.  

Initially, every image of this dataset has been 
resized to 256 × 256 pixels and then taken into the 
augmentation process to create more instances, finally 
making it more balanced among the classes in the 
dataset. As part of this augmentation process, multiple 
augmentation operations like horizontal and vertical 
flipping, width and height shifting, rotation, and 
zooming are applied to the available images to create 
the transformed versions of them.23 With this 
transformed version of images, the dataset becomes a 
rich and sufficient one with many different instances 
for building a better-performing model.24 It also helps 
to avoid overfitting and facilitates building a model in 
a generalized manner. In Table 1, the details of the 
dataset before and after augmentation are presented. 

The majority of the underwater images acquired 
are low-quality in nature, with only a few of them 
being of decent resolution. Underwater objects cannot 
be detected and classified accurately while using these 
low-resolution images for the object detection task. 
Here are a few examples of low-resolution images 
shown in Fig. 2. Hence, these low-resolution 
underwater images are passed to the proposed image 
enhancement process. 

With the hold-out strategy, these enhanced images 
are sliced into an 8:2 ratio for testing and training.25 
The annotation process is then applied on these 
training and testing datasets. Bounding boxes are 
attached to the objects in the underwater images, 
called annotations. The label file contains details such 
as object class and bounding box coordinates are 
stored. This annotation process was done using 
LabelImg tool. The label file format is text since 
YOLOv3 supports text label files. In a label file,  
there are five fields, in which the first field represents 
a class number, the second and third fields  
represent the x, y coordinates of an object's center 
point, and the fourth and fifth fields represent the 
width and height of the bounded object. The 
annotation process, a sample label file, and its  
format are visualized in Fig. 3. Finally, these 

 
 

Fig. 2 — Few of the sample low-resolution underwater images 
 

 
 

Fig. 3 — The Annotation process, a) Original file, b) Bounding
the underwater object, c) Corresponding label file in text format 

Table 1 — The details of the dataset 

Class 
No 

Class  
Name 

Before 
Augmentation 

After 
Augmentation 

Data Split after 
Augmentation 

Train Test 
C01 Dolphin 120 450 360 90 
C02 Jellyfish 150 460 368 92 
C03 Octopus 115 460 368 92 
C04 Seahorse 130 460 368 92 
C05 Starfish 100 440 352 88 
C06 Turtle 118 445 356 89 
 Total 733 2715 2172 543 



ARUN et al.: ENHANCEMENT AND DETECTION OF UNDERWATER OBJECTS 
 
 

1053

enhanced images are used to detect underwater 
objects through the object detection process. 
 
Image Enhancement 

Low-resolution images are enhanced using the 
image enhancement process. A typical workflow of 
the image enhancement process is depicted in Fig. 4. 
 

Building RCARN Model 
 

Reduced Cascading Residual Network (RCARN) 
A deep learning model called Reduced Cascading 

Residual Network (RCARN) is proposed for 
upgrading underwater images by improving the 
resolution of poor-resolution underwater images. It 
contains a total of 28 convolution layers and each 
convolution operation uses a stride value of 1 and the 
same-padding convolution. Among these 28 
convolution layers, 12 layers use a 1 × 1 sized kernel 
and the remaining 16 layers use a 3 × 3 sized kernel. 
In this, each 3 × 3 and 1 × 1 convolution layer is 
followed by a Batch Normalization (BN) Layer, in 
addition to that, every 1 × 1 convolution layer also has 
a ReLU layer after the BN layer. An illustration of the 
Reduced Cascading Residual Network (RCARN) is 
shown in Fig. 5 which is a modified CARN 
architecture developed in the work.26 

The proposed RCARN model is organized as three 
cascading blocks, three concatenation units, and seven 
convolution layers, of which four are 3 × 3 and three 
1 × 1 layers. Between a 1 × 1 and a 3 × 3 convolution 
layer is a cascading block and concatenation unit pair. 
An illustration of the proposed RCARN architecture's 
configuration is mentioned in Table 2. 

The role of the concatenation unit is to combine the 
feature maps that help improve the performance of a 
deep learning model.27 An important reason for 
employing the concatenation unit here is to concatenate 
feature maps that precede and follow a cascading block. 
It facilitates the improvisation of the RCARN model’s 
performance. But, on the other side, it increases the 
number of parameters generated by a model. To prevent 
this problem, the RCARN model adds a 1 × 1 
convolution layer after each concatenation unit. It aids in 
the reduction of the feature map's depth without 
compromising the model's performance. As a result, the 
model's computational complexity is reduced. 
 

Cascading Block 
Cascading block is a core functional unit of the 

proposed RCARN model that differentiates this 
RCARN model from the CARN model presented in 
the work.28 The CARN model's cascading block 
featured global-level cascading connections, allowing 
each convolution layer's output to be passed to every 
next level layers.28 Even though it enhances better 
utilization of feature maps it increases the 
computational complexities.4 To address this, we 
proposed a modified cascade block that generates 
fewer computational parameters without 
compromising the model's efficiency. 

 
 

Fig. 4 — The work-flow of the proposed Image Enhancement
Process 

 
 

Fig. 5 — The structure of the proposed Reduced Cascading Residual Network (RCARN) model 

Table 2 — The architectural configuration of the proposed 
RCARN model 

S. No Layer / Unit Kernel Size No of Filters/ Units 
1 CONV+ BN 3 ൈ 3 32 
2 Cascading Block 3 ൈ 3, 1 ൈ 1 1 
3 Concatenation Unit — 1 
4 CONV + ReLU + BN 1 ൈ 1 64 
5 CONV + BN 3 ൈ 3 32 
6 Cascading Block 3 ൈ 3, 1 ൈ 1 1 
7 Concatenation Unit — 1 
8 CONV + ReLU + BN 1 ൈ 1 64 
9 CONV + BN 3 ൈ 3 32 
10 Cascading Block 3 ൈ 3, 1 ൈ 1 1 
11 Concatenation Unit — 1 
12 CONV + ReLU + BN 1 ൈ 1 64 
13 CONV + BN 3 ൈ 3 32 

CONV – Convolution Layer, 
BN – Batch Normalization Layer, 
ReLU – ReLU Activation Layer 
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The proposed cascading block is built using seven 
convolution layers and three concatenation units, 
which include three 1 × 1 convolution layers, and four 
3 × 3 convolution layers. In contrast to the cascading 
blocks of the CARN model, the proposed cascading 
blocks have three concatenation units that create 
cascading connections rather than global cascading 
connections. It enhances the better utilization of 
feature maps within the model.29 In addition, after 
every concatenation unit, the point convolution layer 
is employed to optimize the computational 
parameters. The structure of the proposed cascading 
block used in this RCARN model is visualized in  
Fig. 6. 

Furthermore, the suggested cascade block can be 
formed in four different ways by varying the number 
of convolution filters used in the 3 × 3 convolution 
layers. In Table 3 the detailed model configuration of 
these four versions is shown. The proposed RCARN 
model is developed in four varieties by these cascade 
block variants: RCARN 32-32, RCARN 32-48, 
RCARN 32-64, and RCARN 64-64. 
 

Training the RCARN Model 
In the beginning, all the proposed RCARN model 

variants are trained on the training dataset in Table 1 
for 200 epochs. The resulting trained RCARN models 
are capable of generating enhanced underwater 
images from low-resolution images. Later, the 

efficiency of these trained RCARN model variants is 
evaluated using the test dataset images. 
 

Creating the Enhanced Underwater Images 
Once the RCARN model is constructed and trained 

successfully, each low-resolution image in the dataset 
is fed into the model. It transforms all the low-
resolution underwater images into enhanced 
underwater images with the Super Resolution 
technique. Later, all these enhanced underwater applied 
to the object detection process for detecting underwater 
objects. As a result of these improved images, objects 
can be detected with higher accuracy than with the 
original low-resolution ones. The proposed image 
enhancement algorithm is mentioned below. 

Algorithm: Image Enhancement Algorithm 
Input: Low Resolution Image 
Output: Enhanced Image 
 1. For every image (low resolution and high resolution) from the
dataset. 
 1.1 For every img from the file: 

 1.1.1 Load the image in YCbCr color format. 
 1.1.2 Resizing the image to 256 ൈ 256 

 1.2 End For 
 2. End For 
 3. Build the model as per the configuration mentioned in Table 2. 
 4. Compile the proposed model along with an Adam Optimizer
(learning rate = 0.001).  
 5.Train and Evaluate the model using fit() and evaluate()
function. 
 6. Load the trained model in the .h5 file format. 
 7. Initialize the new_img parameter as 0. 

 
 

Fig. 6 — The structure of the proposed Cascading Block used in the proposed RCARN model 
 

Table 3 — Architectural configuration of Proposed Cascading Block 
S. No Layer Kernel Size No of Units/ Filters 

32-32 32-48 32-64 64-64 
1 Conv + BN 3 × 3 32 32 32 64 
2 Conv + BN 3 × 3 32 48 64 64 
3 Concatenation Unit — 1 1 1 1 
4 Conv + BN + ReLU 1 × 1 64 64 64 64 
5 Conv + BN 3 × 3 32 32 32 64 
6 Conv +BN 3 × 3 32 48 64 64 
7 Concatenation Unit — 1 1 1 1 
8 Conv + BN + ReLU 1 × 1 64 64 64 64 
9 Concatenation Unit — 1 1 1 1 
10 Conv +BN + ReLU 1 × 1 64 64 64 64 

Conv - Convolution layer, BN – Batch Normalization Layer, ReLU – ReLU Activation Layer 
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 8. For each image as new_img from the test dataset: 
 8.1 Reshape the new_img and generate the scaled new_img
using scaled_new_img = resized_new_img/255.0 

 8.2 Sharp the generated new_img into the size of 256 ൈ 256 
 8.3 Load the sharpened image as an enhanced image into the
output file. 
 8.4 Increment value of image by 1. 

 9. End For 
 
Detection of Underwater Objects 
 

Building an Object Detection Model 
For detecting objects from enhanced underwater 

images, YOLOv3 has been utilized in this work. 
YOLOv3 is one of the significant object detection 
models used in many applications which follow a 
one-stage detection algorithm.30 This model is 
implemented based on the DarkNet framework. This 
YOLOv3 model employs modified DarkNet as a 
backbone network, which comprises 106 convolution 
layers, and its original configuration is 53 layers in its 
previous versions. An architecture diagram of the 
YOLOv3 is illustrated in Fig. 7. 

The salient feature of the YOLOv3 model is a 
multi-scale detector since it detects objects at three 
different scales. This YOLOv3 model is a fully 
convolutional network that generates output by 
applying a 1 × 1 kernel to a feature map. In this, 
feature maps of three different scales, such as  
down-sample the input image by 32, 16, and 8 are 
used to detect objects using 1 × 1 kernels at three 
places, such as 82nd, 94th, and 106th layers within  
the network. 
 

Pre-training the Object Detection Model 
In general, the process of building deep learning-

based object detection models always demands a huge 
training data and more training time. Transfer 
learning is an excellent strategy for building an 
accurate object detection model even with a short 

training period and a small number of training 
images.31,32 Because, transfer learning involves pre-
training the CNN model on large datasets such as 
ImageNet33, Pascal34 and COCO35 dataset, and later 
fine-tuning the model weights is done based on the 
target dataset.This study takes advantage of transfer 
learning by training the YOLOv3 model with the 
COCO dataset, and later models' trained weights are 
fine-tuned using actual underwater images. 
 
Fine-tuning the Pre-Trained Model 

As opposed to training the model from scratch, the 
pre-trained weights will be fine-tuned to fit the actual 
dataset rather than being learned from scratch. As a 
result, using transfer learning, developing an effective 
model with a smaller dataset and a faster training 
period becomes achievable. As a result, it's useful for 
this underwater object detection work wherein 
collecting more training images is challenging. 

While feeding these low-resolution images to the 
object detection task, it is hard to identify the 
underwater objects precisely. Hence, all these low-
resolution images are fed through the image 
enhancement process, in which the proposed RCARN 
model enhances all the low-resolution images into 
high-resolution images using the Super-Resolution 
technique. These enhanced underwater images are 
used to fine-tune the YOLOv3 model for detecting 
underwater objects. Later on, this fine-tuned YOLOv3 
model is applied to the object detection process, such 
that it can detect underwater objects from unseen 
underwater images. 
 
Experimental Environment and Evaluation Metrics 
 

Design of Experimental Environment 
The proposed RCARN and YOLOv3 models are 

developed on Colab-Pro, a platform that features GPU 

 
 

Fig. 7 — The structure of the YOLOv3 object detection model utilized in this Underwater Object Detection task 
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K8, T4 and P100, virtual RAM of 25 GB, and virtual 
memory space of 166 GB. This study used 2715 
underwater images of 6 classes of underwater objects 
after augmentation, as outlined in Table 1. By using 
the holdout method, training and testing datasets are 
created from this dataset in an 8 to 2 ratio.25 Hence, 
the training and testing dataset contains 2172 images 
and 543 images, respectively. The reason behind 
using the hold-out method is it makes the model more 
effective on unseen images.36 

As part of the image enhancement process, all four 
RCARN variants, namely RCARN-32_32, RCARN_32-
48, RCARN_32-64, and RCARN_64-64, are trained 
from scratch for 200 epochs using the training dataset 
mentioned in Table 1. The batch_size used here is  
8 images/batch, so every training epoch contains  
272 steps, and its learning rate is 0.001. In this image 
enhancement process, a categorical_cross-entropy loss 
function and the ADAM optimizer are used. 

During the object detection process, a location for 
each object will be determined. All the images in the 
dataset must be annotated to accomplish this. With the 
annotation tool LabelImg, the annotation task is 
accomplished.As a preliminary step, the underlying 
YOLOv3 dataset used here is pre-trained on COCO 
and fine-tuned afterward on the target underwater 
images dataset. Similar to the image enhancement 
process, the same training and testing datasets split is 
used here. While feeding the training images to this 
YOLOv3 model for fine-tuning, the training images 
pass via the trained RCARN model that enhances all 
the underwater images before it reaches the YOLOv3 
model.  

This fine-tuning process is carried out for  
8000 steps, and the batch size used here is  
16 images/batch. In this object detection task, 
categorical_cross_entropy is used, which measures 
the loss between the actual label and the predicted 
one. Further, the loss between prediction and actual 
label is optimized by incorporating the ADAM 
optimizer with learning_rate = 0.001. 
 
Evaluation Metrics 

The performance of the proposed RCARN model 
and object detection model is evaluated using the 
following metrics 
1. Peak Signal to Noise Ratio (PSNR) 
2. Structural Similarity Index Measure (SSIM) 
3. Average Confidence Score (ACS) 
4. mean Average Precision (mAP) 
5. Total Number of Parameters (TNP) 

Peak Signal to Noise Ratio (PSNR) 
Peak signal-to-noise ratio (PSNR) is the term of the 

performance metrics for the ratio of the highest 
possible power of the signal to the power of the 
corruptive noise that degrades the representation 
fidelity. In the case of signals with a wide dynamic 
range, the PSNR is computed using the logarithmic 
decibel scale. The mathematical form PSNR is 
mentioned in Eq.1 

𝑃𝑆𝑁𝑅 ൌ 10 logଵ
ሺ ௩௨ሻమ

ெௌா
                          … (1) 

𝑀𝑆𝐸 ൌ  
ଵ


∗  ∑ ∑ ||𝑢ሺ𝑖, 𝑗ሻ െ 𝑣ሺ𝑖, 𝑗ሻ||ଶିଵ


ିଵ
    ... (2) 

where, peak value is either the value described by 
the user or the value that was selected from the image 
data type's range, and the MSE represents the mean 
square error computed from the reference image and 
the user's original image, u and v are the array value 
of the original image and of the degraded image, 
respectively, m and n represent the number of rows 
and columns of pixels of the images, respectively, and 
i and j represent the index of each row and column, 
respectively. 
 
Structural Similarity Index Measure (SSIM) 

Structural Similarity Index Measure (SSIM) is a 
performance metric that measures the degree of 
similarity between two images. The SSIM index is 
used for calculating the consistency of an image by 
comparing it to a reference image and initial image. 
The mathematical form SSIM is shown in Eq. 3.  

𝑆𝑆𝐼𝑀ሺ𝑥,𝑦ሻ ൌ
൫ଶఓೣఓା భ൯ሺ ଶ ఙೣା మሻ

ሺఓೣ
భା ఓ

మାభሻሺఙೣ
మାఙ

మାమሻ
              … (3) 

𝑐ଵ = ሺ𝑘ଵ𝐿ሻଶ                 … (4) 

𝑐ଶ = ሺ𝑘ଶ𝐿ሻଶ                 … (5) 

where, 𝜇௫and 𝜇௬ represent the average of image x 
and image y respectively. 𝜎௫ଶ and 𝜎௬ଶ represent the 
variance of image x and image y respectively. 𝜎௫௬ the 
covariance of images x and y. c1 and c2 represent the 
two variables that are used to stabilize the division 
with weak denominators. L represents the dynamic 
range of the pixel-values, typically this is a power of 
(2, (bits per pixel - 1)), and the default values of k1 
and k2 are −0.01 and −0.03. 
 
Average Confidence Score (ACS) 

In object detection tasks, the confidence score is an 
evaluation metric that reflects how confident the 
model is that its predicted bounding box has an object 
inside. Also, how accurate is the bounding box that 
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the model predicts. The average confidence score 
(ACS) is the mean of the confidence score predicted 
by the model for the images in the test dataset. Here, 
ACS is calculated for each object class. The 
mathematical form of ACS is shown in Eq. 6. 





n

i

iCSACS
1                 

 … (6) 

CPIoUCS                   … (7) 

𝐼𝑜𝑈 ൌ  
  ை௩

  
                … (8) 

where, CS represents Confidence Score, n represents 
the total number of images in the dataset, IoU 
represents Intersection over Union, CP represents 
Class Probability which is the probability of the class 
present in the box.  
 

mean Average Precision (mAP) 
The mean Average Precision (mAP) is an average 

of the Average Precision (APr) values, where the 
Average Precision (APr) is calculated for every class. 
The mathematical form of mAP is given in Eq. (9). 

M

A
mAP

M
k k  1 Pr

 
                ... (9) 

where, mAP represents the mean Average Precision, 
APrk represents kth class Average Precision value, and 
M represents the number of classes in total. 
 

Total Number of Parameters (TNP) 
The total number of parameters (TNP) is a 

summation number of parameters generated by each 
layer in the model. The mathematical form of TNP is 
shown in Eq. 10. 





n

i
NPTNP i

1             

 … (10) 

NOCNICKSKSNP              … (11) 
where, NP refers to the no. of parameters generated 
by a convolution layer, the number of layers is 
represented by n, KS represents the kernel size. The 
parameters NIC and NOC represent the number of 
input and output channels, respectively. 
 

Results and Discussion 
The proposed approach includes two major parts: 

Underwater Image Enhancement and Underwater 
Object Detection. The first section of this work 
implements four RCARN model variants to enhance 
underwater images of low resolution. In the second 
section, the YOLOv3 model is utilized for detecting 

underwater objects from the enhanced underwater 
images generated by the RCARN model. 

In the first section, based on Ahn et al. (2018)(28), the 
CARN model is implemented for this study to 
compare the efficiency of the proposed model variants 
and determine the most efficient one. The training 
process on all the RCARN models' variants 
accomplished by the training dataset and its details is 
mentioned in Table 1. The performances of these 
models are assessed by using the metrics, namely 
PSNR and SSIM. The corresponding results and the 
parameters generated by each model are recorded in 
Table 4.  

All the proposed models outperformed well when 
compared to the existing CARN model (Table 4), and 
its TNP values are also lesser than the existing CARN 
model, except for Proposed RCARN_64-64. In 
comparison to other RCARN variants and the existing 
CARN model, the proposed RCARN_32-32 has less 
TNP value, which is 0.2 Million. Usually, the value of 
metrics PSNR and SSIM will be high if a better 
resolution enhancement is achieved in the images.  

Among these proposed RCARN variants, except 
the RCARN_32-64 model, the SSIM value decreases 
with the increase in PSNR value. In the model 
RCARN_32-64, the increase in PSNR value does not 
affect the SSIM value. Further, this proposed 
RCARN_32-64 model also achieved the top PSNR 
and SSIM values, such as 30.59 and 0.908, when 
compared to others. But its TNP value is 0.37 Million, 
which is a little higher, however, the difference is 
very small. The proposed RCARN_32-64 model 
serves the best results regarding image enhancement. 
Hence, this proposed RCARN_32-64 model is used to 
enhance the underwater images, and these generated 
enhanced images are utilized for training the object 
detection model.  

The detection of underwater objects using the 
YOLOv3 model is assessed using the ACS and mAP 
metrics. This ACS is calculated on every class basis 
of the six different classes of objects used in this 
work. The confidence Score, commonly called the 
objectness score, measures the probability of an 

Table 4 — Comparison of the proposed metrics of RCARN 
variants with the existing model 

S. No Model Variants NoP (in Million) PSNR SSIM 
1.  CARN27 0.62  26.58 0.85 
2 RCARN_32-32 0.20 29.59 0.90 
3 RCARN_32-48 0.27 29.83 0.87 
4 RCARN_32-64 0.37 30.59 0.90 
5 RCARN_64-64 1.38 30.07 0.86 
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object being present in the predicted location. The 
ACS is the average of all the confidence scores 
predicted by the model, here calculated for the images 
in the test dataset. The learning curves of the ACS and 
the IoU values over the fine-tuning steps are 
visualized in Fig. 8. 

Further, to understand how the image enhancement 
process influences the object detection process, the 
ACS and mAP are calculated for both the actual low-
resolution images and the enhanced images produced 
by the RCARN_32-64 model. An analysis of the ACS 
metric values attained is presented in Table 5, while 
an analysis of the ACS metric values actual versus 
enhanced images is shown in Fig. 9. 

As seen in Table 5, the average improvement in 
overall ACS for the YOLOv3 model on enhanced 

images was~8.5% compared with the overall ACS 
value for the actual image. A few detected images of 
the enhanced version are shown in Fig. 10. Hence, the 
proposed RCARN_32-64 model helps the YOLOv3 
model for detecting underwater objects more 
precisely by enhancing the low-resolution underwater 
images. 

The most common metric for assessing an object 
detection model’s performance is mAP. Here, the 
mAP is computed for both actual image low-
resolution and enhanced images at two ranges of IoU 
= 0.75 and IoU = 0.5: 0.9. From Table 6, at IoU = 0.5 
level, the attained mAP value of both actual low-
resolution and enhanced images are considerably 
good, 85.05 and 90.5, respectively. Compared to 
actual images, enhanced images offer an improvement 

Table 5 — The Comparison ACS values achieved for Actual and 
Enhanced images 

Class Name Achieved ACS (%) 

Actual image Enhanced image Improvement 
Dolphin 84.01 94.51 10.5 
Jellyfish 85.15 93.54 7.99 
Octopus 86.71 96.02 9.31 
Seahorse 87.83 94.83 7.00 
Starfish 88.53 97.95 9.42 
Turtle 88.12 96.44 8.32 

 

 
 

 
 
Fig. 8 — The learning curves of IOU and Confidence score over 
fine-tuning steps, a) Intersection over Union (IoU) learning curves 
b) Confidence Score learning curves 

 
 
Fig. 9 — The comparison of ACS values for actual images vs
enhanced images 
 

 
Fig. 10 — Few of the sample deselected enhanced underwater
images 
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on mAP of ~5%. But, at IoU = 0.5:0.9 level, the mAP 
value of the actual images is very low, is 60.51 in 
contrast to the images with the enhancement process 
by the RCARN model, the mAP is increased to 
75.35% and the improvement in mAP is ~15%. From 
Tables 5 & 6, we demonstrate that the image 
enhancement process using the RCARN model helps 
to improvise the detection capability of the YOLOv3 
model in the underwater objects detection process in 
this study.  
 
Conclusions 

In this study, an effective method is presented to 
detect underwater objects that employ image 
enhancement using the Image Super-resolution 
technique before detecting the objects. To perform an 
underwater image enhancement and object detection, 
a proposed RCARN_32-64 and a significant YOLOv3 
object detection model are employed in this study. 
The RCARN_32-64 model is constructed in a way of 
enhancing the images with better PSNR and SSIM 
values with lesser computational complexity. Further, 
the performance of the object detection is improvised 
by Transfer Learning technique, where the YOLOv3 
model is pre-trained using COCO data and later fine-
tuned using enhanced underwater images. With this 
proposed approach, the ACS and mAP are improved 
by ~8.75 % and ~ 15%, respectively. It helps to build 
an autonomous aquatic inspection system that 
restrains the expenses and risks associated with the 
aquatic inspection process.  

In this study, we have utilized six underwater 
species. As part of our future work, we shall be 
planning to build a model to recognize more 
underwater species which helps to survey the 
underwater species in a particular aquatic 
region. Further, we shall also be planning to build a 
model that enhances the low-resolution video to high-
quality video on the fly.  
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