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Drying is a critical primary processing technique in enhancing and maintaining the quality and storability of Dioscorea 
pentaphylla. The present work investigated the effect of forced convective drying at three drying temperatures (50, 60, and 
70℃). Ten drying and four-color kinetics models were used to fit the drying data to study the drying behavior and the effect 
of temperature and time on color change. Moisture diffusivity increased with hot air temperature (4.88526 × 10−10– 
8.8069×10−10 m2/s). For Dioscorea pentaphylla slices, 27.04 (kJ/mol) of activation energy was found. Hii and others model 
gives the superior fitting for all the drying temperatures followed by logarithmic and Avhad and Marchetti model. Color 
kinetics was evaluated using L, a, and b values at a specified time during whole drying process. Temperature and time 
influenced the Lightness (L), yellowness (b), a value, chroma, hue, and browning index (BI). Dried slices from 70℃ showed 
more color change, whereas those from 50℃ had a medium-light brown. The modified color model is best fitted with high 
R2 and lower chi-square. Potassium metabisulfite (K2S2O5) pre-treatment and boiling significantly affected the drying time 
and final color of slices. The study reveals that drying at 50℃ exhibits better color retention and could be effectively used to 
dry Dioscorea pentaphylla. Dried Dioscorea pentaphylla can be utilized in both food and pharmaceutical industries for 
several applications for formulations food products and health supplements. 

Keywords: Activation energy, Drying and color kinetics, Industrial production, Modeling, Moisture diffusivity 

Introduction 
Globally, the burden of malnutrition and 

undernutrition is increasing as a result of the rapid 
population growth.1 With a growing world population 
and dwindling natural resources, it is very important 
to diversify farming and find new sources of food 
to meet increasing demand of global population.2 
Dioscorea pentaphylla (Five Leaf Yam) is a good 
source of essential dietary minerals and bioactive 
constituents such as phenolics, flavonoids, saponins, 
diosgenin; containing mainly starch (75–85%) with a 
small amount of protein, lipids.3,4 It is reported that 
Dioscorea pentaphylla exhibit analgesic, anti-oxidant, 
antimutagenic, anti-inflammatory, antibacterial, 
antigenotoxic potential.4–6 The major hurdle in wider 
utilization of this yam is due to its poor storability, 
and higher microbial activity due to higher water 
activity and higher enzymatic browning, which affect 
the shelf life of yam tuber.7 Thus, processing of tuber 
mainly pretreatment and drying are important step to 
reduce these issues and widen the applicability of 

dried yam in preparation of flour and value-added 
products, starch extraction, and extraction of 
dioscorin and disogenin medicinal compounds. 

Drying is the most commonly used method in fruit 
and vegetable preservation by reducing the water 
activity, microbial growth, and moisture-related 
kinetic degradation.8 Drying not only extends the 
shelf life of products, but also aids in the reduction of 
shipping, packing, and storage costs.9 Sun drying is 
the often-utilized drying practice in rural and tribal 
areas of Asia and Africa.10 However, it has several 
disadvantages and limitations in maintaining product 
quality. Therefore, much attention has been given to 
the drying process as it changes the physicochemical 
properties. The most widely used drying process in 
the food industry is hot air drying.9,11 Hot air driers 
are simple in design and achieve better operation 
control over various drying conditions and maintain 
higher drying rate with better product quality. In 
drying process optimization is a challenging task and 
kinetics modeling is vital to understand product 
drying behavior under various drying conditions and 
selection of ideal drying conditions for superior 
quality products.12 Modeling is critical for 
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comprehending heat and mass transfer as well as 
minimizing experimental error to improve the better 
drying process for storage and processing of dried 
products.11,13 Drying and color kinetics behavior of 
Dioscorea hispida has studied by Sahoo et al.11 
Though every species of Dioscorea will show 
different behavior with drying kinetics. This change 
in kinetics behavior is due to the chemical 
composition of species. Similarly, in Discoera species 
enzymes catalyze their reaction differently and vary 
with variety, cultivar, pH, anti-browning agents, and 
temperature.4,5 Therefore, drying study of each 
species is important to understand the kinetics 
behavior and optimization of end quality of products.  

To our knowledge, no prior research has been 
undertaken to investigate the drying behavior 
combining with the boiling pretreatment on color 
kinetics, texture, microstructure, and rehydration 
properties of Discoera pentaphylla. Considering these 
shortcomings, the current study is conducted to (a) 
investigate the effect of pretreatment and drying 
techniques on drying and color kinetics; and (b) to 
explore the effect of pretreatment and drying methods 
on color, texture, microstructure, and rehydration 
qualities; (c) to fit and study the mathematical models 
for drying kinetics and color kinetics models.  
 
Material and Methods 
 

Sample Preparations and Pretreatment  
Dioscorea pentaphylla tubers were harvested with 

the assistance of native people (Angul, Odisha, India). 
Dioscorea pentaphylla tubers were peeled, washed 
and sliced into 4–5 mm thickness using a sharp knife. 
Slices of 300 gm were immersed in a solution of 
potassium metabisulphite (0.5 percent w/v) (K2S2O5), 
an anti-browning agent and then boiled (100℃) for  
30 minutes. Boiled samples were surface dried with a 
muslin cloth. The hot air oven method (AOAC, 
930.15; 2005)(14) was used to determine the moisture 
content of yam slices. 
 

Drying of Dioscorea Pentaphylla Slices 
Drying experiments were undertaken in a lab-scale 

forced convective dryer (Fig. 1). The drying tray is 
attached over load cell (Siemens wl260 sp-s c3 model 
with 0.015% accuracy) and weight change was 
displayed and recorded from the designed auto 
weighing equipment. The time interval was set in the 
control panel to record the weight loss of the sample. 
The drying studies were conducted at three 
temperature levels (50, 60, and 70℃). A double-

coated heat-sealed polythene pouch was used to keep 
the dried product dry and cool for additional 
investigations. Experiments were done in triplicate in 
this study. 
 

Moisture Content and Drying Rate 
The following expression in Eq. (1) determined the 

Moisture Ratio (MR) of sample drying during the 
experiment.  
 

𝑀ோ ൌ
ெିெ

ெబିெ
                                                      …(1) 

 

where, M0, Mt, and Me are the initial, time-varying, 
and equilibrium condition moisture contents of 
samples (g water/g dry matter).  

The drying rate (DR) of Dioscorea pentaphylla 
slices at a specific time was computed using Eq. (2): 

 

DR = 
ெିெశ∆

௧మି௧భ
                                                       ...(2) 

where, 𝑀௧ ା ∆௧ represent the sample moisture at t + Δt 
drying time (g water/g dry matter/min). 
 

Drying Kinetics and Mathematical Modeling 
Drying models have been used in the design, 

construction, process optimization, and determination 
of drying behavior. In thin layer modeling,  
various mathematical models have been developed 
and classified as theoretical, semi-theoretical, and 

 
 

Fig. 1 — Schematic outline of lab scale hot air dryer (1-sample 
tray, 2-auto weighing system, 3-air outlet, 4-fan, 5-temperature 
sensor, 6-hot air, 7-Digital display) (b) Color changes of yam
slices at different drying temperatures 



SAHOO et al.: CONVECTIVE DRYING OF YAM (DIOSCOREA PENTAPHYLLA) SLICES 
 
 

997

empirical models.15 The theoretical model such as 
distributed models and Lumped parameter models 
considered several assumptions, which led to many 
errors. On the other hand, in semi theoretical, external 
resistance is considered, which affects the  
drying characteristics of the product and provides 
flexibility by using experimental data for parameter 
considerations like product geometry, conductivity, 
and diffusivity.12 Therefore, these models are simple, 
quick, efficient and more accurate in predicting the 
process.16 Among several semi theoretical models, 10 
commonly used models were selected and listed in 
Table 1.  
 

Effective Diffusivity and Activation Energy 
Effective moisture diffusivity is a transportation 

property that changes with type of dryer, drying 
conditions, and the properties of the materials. Fick's 
equations of diffusion can be used assuming an even 
moisture distribution in the sample, central symmetric 
mass transfer, and minimal shrinkage and external 
resistance. For an extended drying period, Fick’s 
equation can be simplified12 and stated in Eq. (3). 

 

MR ൌ
଼

గమ
 𝑒𝑥𝑝 ቀ

ିగమ
ସమ

𝑡ቁ                                     ...(3) 
 

where, Deff represents the moisture diffusivity (m2/s), 
L represents the half-thickness of slices (m), and t 
represents the drying time (s). 

Eq. (4) is simplified by calculating the natural 
logarithms of both sides.  

 

ln(MR) = ln
଼

గమ െ
గమ
ସమ

                                       …(4) 
 

The slope (K) is determined by regressing ln(MR) 
against drying time. Gradients (K) can be used to 
calculate effective diffusivity (Deff).  

 

K = 
గమ
ସమ

                                                             …(5) 

Diffusivity of foods depends on temperature, as the 
Arrhenius equation demonstrates. Therefore, the 
activation energy was estimated by plotting ln (Deff) 
vs. 1/T, which resulted a slope of (−Ea/R)11. The 
activation energy (Ea) can be estimated using the 
following formula expression (Eq. 6).  
 

D = 𝐷 exp ቀെ
ாೌ

ோሺ்ାଶଷ.ଵହሻ
ቁ                                  …(6) 

 

where, D0, Ea, R and T denote the Pre-exponential 
factor (m2/s), activation energy (kJ/mol), universal gas 
constant (8.314 kJ/mol K) and air temperature in 
drying (℃), accordingly. 
 

Texture Measurement 
Textural hardness and crispiness of dried food 

products are important quality attributes for consumer 
preference. Textural properties of dried slices of 
Dioscorea pentaphylla were analyzed using Texture 
Analyzer (Model: TA. HDplusC, Stable Microscopes, 
England, UK) equipped with a P/0.25 spherical probe. 
A trigger force of 10 g and a test speed of 2 mm/s 
were used.11 Hardness, crispiness, work done, and the 
number of peaks was determined from force 
displacement curve using connect lite software. 
Twenty samples were used in each experiment for 
each treatment in triplicates. 
 

Morphology of Dried Yam Slices 
The effect of the drying method on dried Dioscorea 

pentaphylla at the micro-level can be studied using a 
Scanning Electron Microscope (SEM). Structural 
properties at the micro-level can be used to select the 
best processing methods in Dioscorea pentaphylla 
drying. SEM micrograph of dried Dioscorea 
pentaphylla was obtained using FEI Scanning Electron 
Microscope (Model: Zeiss EVO 50, German). The 
images were captured at 20 KV excitation voltages at 
70x to 500x magnifications. The obtained images were 
analyzed using ImageJ software. 

Table 1 — List and prominence of the mathematical models used in the study 8,11–13 

S.N Model name Model 

1. Lewis model  MR = exp(−kt)  
2. Page model MR = exp (−ktn) 
3. Modified Page model MR = exp [−(kt)n]  
4. Henderson and Pabis model MR = a exp (−kt) 
5. Logarithmic model (asymptotic Model) MR = a exp (−kt) + c 
6. Two-term model M R = a exp (−k0t) + b exp (−k1t)  
7. Approximate diffusion model MR = a exp (−kt) + (1-a) exp (−kbt) 
8. Midilli-Kucuk model M R = a exp (−kt) + bt 
9. Avhad and Marchetti model MR = aexp(−ktn)  
10 Hii and others model. MR = a exp(−k1t

n) + b exp(−k2 t
n) 
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Rehydration Ratio 
The rehydration capacity of dried Dioscorea 

pentaphylla slices was estimated using method 
described by Xiao et al.17 with little modifications. 
Dry Dioscorea pentaphylla slices were rehydrated in 
a water bath maintained at 40°C. Distilled water  
(100 ml) is added into a 150 ml container and placed 
in a water bath. A sample of 5 gm was weighed and 
placed in a water bath for 60 minutes, then placed on 
a filter paper to remove surface moisture and weighed 
again. The below-given equation was used to compute 
the rehydration ratio. 
 

Rehydration ratio = 
ோబ
బ

                                          …(7) 
 

where, R0 and D0 represent rehydrated and dehydrated 
(dried) sample weight.  
 
Color Measurement 

A colorimeter (CIE Lab) (Model: CR20, Konica 
Minolta, Inc., Japan) was used to record the visual 
appearance and color change of Dioscorea 
pentaphylla slices before and after dipping in solution 
and throughout drying time at specified time 
interval.11 In the CIE Lab system, the L value 
indicates the color brightness, a value indicates the 
red or green color, and b value indicates the yellow or 
blue color in the samples. The total color difference 
(∆E), chroma (C), hue angle (α), and browning index 
(BI), were determined from L, a, and b values using 
Eq. 8–11.(18,19) Hue angle ranges from 0–360° and 
represents color change from red to green while 
chroma indicates color intensity.20  

 

∆E = ඥሺ𝐿 െ 𝐿௧ሻଶ  ሺ𝑎 െ 𝑎௧ሻଶ    ሺ𝑏 െ 𝑏௧ሻଶ   ...(8) 
 

C = ሺ𝑎௧ െ 𝑏௧ሻଶ                                                      …(9) 
 

α= 𝑡𝑎𝑛ି ቀ


ቁ                                                       …(10) 

 

BI = 
ଵ ሺି.ଷଵሻ

.ଵ
                                                  …(11) 

 

where, x = 
ାଵ.ହ

ହ.ସାି
 

 

where, “0” and “t” indicates the color readings of 
treated slices and at particular drying time interval, 
respectively. 
 
Color Kinetics 

Drying requires kinetic modeling to produce a 
kinetic rate dependent on process variables and 
predicts color change behavior. Color kinetics models 

describe the degradation or formation of color in the 
sample. The following equation (Eq. 12) can explain 
the quality factor's concentration rate (C). 
 

ௗ

ௗ௧
ൌ  െ𝑘𝐶                                                         ...(12) 

 

C indicates the quality concentration attribute at 
time t, and n is the rate of reaction order. 

By integrating Eq. (12), zero-order, first-order, 
modified kinetics, and fractional conversion kinetics 
models can be deduced and expressed in Eq. (13–
16).(11,18,20) The color data obtained from hot air 
drying fitted in Eq. (13–16) using non-linear 
regression analysis.  
 

𝐶 ൌ 𝐶 േ 𝑘𝑡                                                         ...(13) 
 

𝐶 ൌ 𝐶exp ሺേ𝑘𝑡ሻ                                               …(14) 
 


బ
ൌ 𝐴𝑡ଶ  𝐵𝑡  1                                              …(15)  

 
ି
బି

ൌ expሺേ𝑘𝑡ሻ                                              …(16) 
 

C0, Cf, and C represent the initial, final, and 
specified time color values of samples and ± sets the 
color formation and degradation in the sample.  
 
Statistical Analysis 

All experiments were performed in triplicates. The 
data on texture and rehydration are reported as mean 
± SD. To examine the data at a P-value of 0.05 (P ≤ 
0.05), a post hoc Tukey test was used (IBM SPSS, 
version 26, Armonk, NY, USA). ORIGINLAB 
software (2021b) was used to fit models and examine 
drying data statistically. 
 
Results and Discussion 
 
Moisture Content and Drying Rate 

The moisture ratio was calculated using the weight 
change of samples recorded in auto weighing system 
during the drying experiments. Typical Moisture 
Ratio (MR) curves of yam slices at 50–70°C 
temperatures are elucidated in Fig. 2a. Sample 
moisture content was decreased with drying time until 
it reaches equilibrium moisture content. At initial 
stage of drying in all temperatures, faster reduction 
was observed. This could be linked to the diffusion 
and availability of surface water. Further, a 
comparatively higher rate of MR reduction at a higher 
temperature of 70°C could be due to an increased 
evaporation rate. Drying time of 16, 11, and 9 h were 
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Validation of Model 
The fitting of the experimental data and predicted 

data of the Hii and others model is described in Fig. 4. 
From these graphs, it is revealed that the predicted 
data are banded to and closely around the straight 
line, which shows the suitability of these models for 
the prediction of drying behavior of Dioscorea 
pentaphylla slices in all drying temperatures. Various 
fruits and vegetables have been accurately predicted 
by the drying behavior predictions of this model.12 

Drying time and temperature-dependent evolution of 
the drying process for final product characteristics can 
be well suited to explain the behavior of Dioscorea 
hispida drying. 
 

Color Change of Dioscorea pentaphylla Slices 
Color is an essential attribute for consumer 

acceptance and marketability of dried products 
Browning and shrinkage in the final dried product 
have a negative impact on acceptance. The color 
change of final dried products in Dioscorea 
pentaphylla mainly affected by enzymatic browning, 

non-enzymatic browning, pigment degradation and 
ascorbic acid oxidation.11 In drying, color change is 
directly related to applied temperature and product 
moisture content and affected the non-enzymatic 
browning and pigment degradation in the products. 
Thus, color readings (L, a, and b) were recorded at a 
specified time intervals during the whole drying 
process. 

The color of fresh-cut Dioscorea pentaphylla slices 
shows white and yellowness in the sample. These 
tubers contain the highest levels of polyphenol 
oxidase activity and within a few seconds of peeling 
and cutting, yam slices turn into dark brown color.3,5 
Therefore, Potassium Metabisulfite soaking and 
boiling is an important pretreatment was applied to 
reduce the enzymatic activity in the yam slices. After 
pretreatment sample shows the appearance of the little 
darker, greener, and lower yellowish color on the 
slices. Average color values of L, a and b were 
reduced by 66.2– 53.35, 6.5–3.2, and 34.1–18.1, 
respectively. This could be attributed due to the 

Table 2 — Results obtained from the statistical analysis of the ten selected model at 50–70℃ temperatures 

Model Temperature (℃) Χ2 RSS R2 RSME 

Lewis 50 0.000144 0.00347 0.99874 0.01202 
60 0.000464 0.00835 0.99613 0.02154 
70 0.000568 0.00965 0.99437 0.02383 

Page 50 0.000116 0.00268 0.99903 0.01079 
60 0.00018 0.00306 0.99858 0.01342 
70 0.000265 0.00424 0.99753 0.01628 

Modified page 50 0.000144 0.00347 0.99874 0.01202 
 60 0.000464 0.00835 0.99613 0.02154 
 70 0.000568 0.00965 0.99437 0.02383 

Henderson and Pabis 50 0.00015 0.00345 0.99875 0.01225 
60 0.000404 0.00688 0.99681 0.02011 
70 0.00046 0.00736 0.99571 0.02145 

Avhad and Marchetti 50 0.000088975 0.00196 0.99929 0.00943 
 60 0.000201338 0.00342 0.99855 0.01419 
 70 0.000279549 0.00419 0.99755 0.01672 

Midillikucuk 50 0.000373036 0.00783 0.99715 0.01931 
 60 0.00131 0.02093 0.99111 0.03617 
 70 0.0000947375 0.00133 0.99923 0.00973 

Two term 50 0.000138811 0.00305 0.99889 0.01178 
60 0.000458341 0.00688 0.99681 0.02141 
70 0.000393016 0.0059 0.99656 0.01982 

Logarithm 50 −0.0000826732 0.00182 0.99934 0.00909 
 60 0.000352311 0.00599 0.99846 0.01877 
 70 0.000113306 0.0017 0.99901 0.01064 

Diffusion Approach 50 0.000151 0.00347 0.99874 0.01229 
 60 0.000186 0.00316 0.99866 0.01364 
 70 0.000643 0.00965 0.99437 0.02537 

Hii and others model 50 0.0000931745 0.00196 0.99969 0.00965 
 60 0.000213921 0.00342 0.99955 0.01463 
 70 0.0000587818 0.000764 0.99955 0.00767 
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respectively. Chroma and Hue were well described  
by fraction model for sample dried at 50 and  
60℃ and modified color model for sample dried at 
50℃. While browning index was poorly fitted with 
Fraction, modified color and first order model for  
50 and 60 and 70℃, respectively. The value of χ2 for 

BI is high due to the sample data does not fit the 
expected values very well. After 200 minutes of 
drying, more change in BI values was observed; 
therefore, model is not fitted well with BI of 
experimental data. 

Among these models, modified color followed by 
fraction model best fitted with color parameters with 
high R2 and lower chi square. Zero order and first 
order are mainly popular in colour kinetics but in this 
study these two models are not well fitted with 
experimental data. The results are in agreements with 
previous studies on color kinetics.18,20,40 Model 
constant values signifies the color change pattern at 
different temperature levels and exhibited in Table 5. 
The drying constant is an important parameter that is 
linked to the sample moisture removal rate. From 
Table 5, it is noted that the drying constant (k) varies 
and increases with hot air temperatures. An analogous 
study has been recorded in yam drying.11  
 

Rehydration Capacity  
For dried products, rehydration is an important 

quality indicator. The rehydration ratio for different hot 
air temperatures was presented in Table 6. The 
rehydration for hot air drying at 50, 60 and 70℃ were 
2.68, 3.01 and 3.11, respectively. Rehydration ratio 
increases with drying temperatures. However, there was 
no significant difference between sample dried at 60℃ 
and 70℃. The rehydration properties of samples are 
connected with the structural properties of samples. The 
higher rehydration ratio depicted that uptake of moisture 
through capillary was high and strongly correlated with 
porosity and cavities of the microstructure of the sample. 
Higher temperature had a more void and porous 
structure thus showing high rehydration ability. 
Moreover, the chips dried with 50℃ show collapsed 
cells with lower and uneven pore structures, thus 
showing lower rehydration ability. Similarly, type of 
trend was observed in FIR and heat pump dried Chinese 
yam33 and hot air-dried Dioscorea hispida slices.1 
 
Textural Properties 

Textural properties of foods are important quality 
attributes as these traits influence consumer 
preference.42 The drying methods significantly 
affected the hardness and crispiness of the Dioscorea 

Table 4 —Non-linear regression analysis results of colour parameters from four selected model at 50–70℃ temperatures 

Drying  
temperature (℃) 

Parameter Model 1  
(Zero order) 

Model 2  
(First order) 

Model 3  
(Fraction model) 

Model 4  
(Modified  

color model) 

  χ2 R2 RSME χ2 R2 RSME χ2 R2 RSME χ2 R2 RSME 
50 L 2.679 0.979 1.637 1.319 0.989 1.149 1.379 0.989 1.174 1.549 0.988 1.245 
 a 0.682 0.193 0.826 0.701 0.171 0.837 0.330 0.627 0.574 0.051 0.942 0.226 
 b 0.194 0.981 0.441 0.253 0.976 0.503 0.411 0.960 0.641 0.203 0.981 0.451 
 ∆E 3.042 0.980 1.744 16.418 0.891 4.052 1.444 0.991 1.202 1.606 0.990 1.267 
 Chroma 0.203 0.979 0.451 0.322 0.967 0.568 0.365 0.963 0.604 0.186 0.982 0.431 
 Hue angle 7.451 0.789 2.730 9.271 0.858 3.045 2.782 0.924 1.668 1.756 0.952 1.325 
 BI 3.227 0.962 1.796 5.110 0.940 2.261 0.299 0.996 0.547 0.331 0.996 0.576 

60 L 5.129 0.964 2.265 1.756 0.988 1.325 1.485 0.995 1.219 2.108 0.986 1.452 
 a 0.538 0.226 0.734 0.555 0.203 0.745 0.176 0.761 0.420 0.064 0.913 0.253 
 b 1.457 0.901 1.207 0.754 0.949 0.869 0.272 0.983 0.522 0.582 0.963 0.763 
 ∆E 6.682 0.957 2.585 22.506 0.856 4.744 1.797 0.989 1.340 2.690 0.984 1.640 
 Chroma 0.975 0.918 0.987 0.586 0.951 0.766 0.114 0.985 0.338 0.503 0.960 0.710 
 Hue angle 10.985 0.832 3.314 9.271 0.858 3.045 1.253 0.982 1.119 2.781 0.960 1.668 
 BI 3.374 0.977 1.837 3.843 0.974 1.960 6.628 0.955 2.574 3.566 0.977 1.888 

70 L 16.529 0.887 4.066 10.424 0.929 3.229 7.868 0.950 2.805 11.218 0.928 3.349 
 a 0.259 0.929 0.509 0.464 0.872 0.681 0.038 0.990 0.194 0.066 0.991 0.257 
 b 1.454 0.912 1.206 0.647 0.961 0.804 0.406 0.977 0.637 0.691 0.961 0.832 
 ∆E 17.806 0.889 4.220 33.213 0.793 5.763 7.635 0.955 2.763 11.437 0.933 3.382 
 Chroma 1.426 0.798 1.194 1.092 0.845 1.045 0.114 0.985 0.338 0.503 0.960 0.710 
 Hue angle 4.444 0.983 2.108 3.810 0.986 1.952 3.623 0.987 1.903 3.793 0.987 1.948 
 BI 120.338 0.839 10.970 3.843 0.974 1.960 152.927 0.796 12.366 89.442 0.888 9.457 
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pentaphylla slices (Table 6). In hot air-dried sample, 
hardness was decreased with hot air temperature and 
varies from 32.37 to 50.31 N. However, there was not 
significant difference found between 50 and 60℃-
dried samples. Similar type of decreases in hardness 
(127.39–97.85 N from 40–70℃ drying temperature) 
was observed in hot air-dried elephant foot yam.21 
Similarly, crispiness of sample decreased with hot air 
temperature and varied from 47.07−94.08 N/mm. For 
crispiness, there was significant difference between 
all temperatures. The number of peaks during texture 
analysis for sample dried at 50, 60 and 70℃ were 5.3, 
4.6, and 2.6, respectively while reaching to zero point. 
Compare with 50 and 60℃, hardness, crispiness and 
number of peaks were significantly reduced for 
sample dried at 70℃, which indicates crispier 
pentaphylla slice. A similar type of trends was 
observed in ultrasound assisted far infrared dried 
potato slices43. Work done is the amount of energy 
necessary to break the strength of a sample's internal 
bonds. The work done was decreased with increased 
temperature varied between 0.037−0.043 (J). No 
significant difference was found for work done. The 
samples dried at 50°C had a higher energy and work 
output. A similar textural trend was observed in hot 
air-dried elephant yam21, pumpkin and green pepper.16 

Effect of Drying Temperature on the Microstructure  
During drying, material experiences stress due to 

temperature and moisture gradient causing alteration 
in cell structure. Therefore, it is important to 
understand the structural changes that occurred during 
the drying process. The effect of drying temperature 
was explained by SEM micrographs of dried yam 
slices presented in Fig. 7. The images represented the 
cell structure of polygonal and polyhedron shape and 
different size starch granules. 

From the Fig. 7, it is clearly evident that sample 
dried at 70℃ had larger voids with connected cell 
structure as compared with other 2 temperatures. 
Samples dried at 50℃ had flattened cell with lower 
num and uneven pore structure. The compact 
structure was observed in sample dried at 50℃ due to 
contraction along with removal of water, but such 
compactness in structure obstructs the outward 
diffusion of internal moisture. This collapse of cell 
structure in hot air dried was due to higher drying 
time and prolonged thermal destruction caused 
shrinkage in the samples. The void size is increased 
with hot air-drying temperatures. The larger voids in 
the samples helps in higher effective diffusivity, 
evaporation rate, and faster drying. A similar type of 
trends was observed in sweet potato23, and kiwi fruits 
by Zeng et al.44 

Table 5 — Model constant obtained by non-linear regression analysis results of colour parameters of the experimental data 

Drying 
temperature 

(℃) 

 Model 1  
(Zero order) 

Model 2  
(First order) 

Model 3  
(Fraction model) 

Model 4  
(modified color model) 

  C0 K0 C0 K0 C0 Cf K0 C0 A B 
50 L 51.646 0.036 53.057 0.001 53.120 1.757 0.001 52.834 0.000 −0.001 
 a 4.013 −0.001 4.075 0.000 2.857 5.014 0.011 3.154 0.000 0.003 
 b 18.487 0.010 18.741 0.001 18.941 7.106 0.001 18.486 0.000 −0.001 
 ∆E 3.205 0.037 7.415 0.002 1.610 58.455 −0.001 1.880 0.000 0.027 
 Chroma 18.904 0.009 19.105 0.001 19.148 2.952 0.001 18.732 0.000 0.000 
 Hue angle 78.032 0.016 77.455 0.001 81.019 65.116 0.004 80.626 0.000 −0.001 
 BI 48.121 0.028 48.872 0.000 45.751 75.602 −0.002 46.280 0.000 0.001 

60 L 51.172 0.053 53.120 0.002 53.883 10.812 0.002 53.176 0.000 −0.002 
 a 3.955 −0.002 4.008 0.000 2.754 4.945 0.016 3.173 0.000 0.004 
 b 16.500 0.017 17.213 0.002 18.277 7.181 0.005 17.577 0.000 −0.002 
 ∆E 4.039 0.055 8.219 0.003 0.845 43.905 −0.003 1.737 0.000 0.051 
 Chroma 17.002 0.015 17.503 0.001 17.994 10.466 0.009 17.801 0.000 −0.002 
 Hue angle 76.867 0.033 77.455 0.001 81.873 59.242 0.006 80.138 0.000 -0.001 
 BI 49.432 0.054 50.394 0.001 47.414 94.238 −0.002 49.520 0.000 0.001 

70 L 49.146 0.064 51.584 0.002 54.398 18.670 0.005 52.025 0.000 −0.002 
 a 3.791 0.010 4.127 0.002 3.238 9.302 −0.004 3.270 0.000 0.006 
 b 15.665 0.022 16.594 0.002 17.357 4.984 0.005 16.719 0.000 −0.002 
 ∆E 5.946 0.067 9.803 0.003 0.295 37.550 −0.005 2.820 0.000 0.043 
 Chroma 15.888 0.013 16.248 0.001 17.994 10.466 0.009 17.801 0.000 −0.002 
 Hue angle 77.845 0.091 80.005 0.002 79.216 −35.070 0.001 78.951 0.000 −0.001 
 BI 45.390 0.141 50.394 0.001 43.119 174.176 −0.001 52.484 0.000 0.000 
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Conclusions 
This research work revealed that the study of the 

drying behavior is important for optimizing the drying 
rate, drying time and other quality parameters of 
Dioscorea pentaphylla slices. It was observed that the 
boiling and potassium metabisulfite (K2S2O5) had 
significant effect on moisture diffusion and color 
changes. All models revealed strong correlations for 
statistical parameters and a good match to 
experimental data. However, the Hii and other models 
showed a high value of R2 and low value of χ2, 
RMSE, and RSS values. The drying behavior of yam 
slices during convective drying may thus be predicted 
using this Hii model and other models. Similarly, for 
the prediction of color changes during convective 
drying, Fraction kinetics model can be used as it 
proved to best fit among all the color models. Hot  
air temperatures and time affected the texture, 
microstructure, and rehydration. Both the hardness 
and crispiness decreased with time, while the 
rehydration ratio increased. This work presented a 
brief idea for production of dried yam slices for long-
term storage and food value application using 
convective dryer. However, in depth studies regarding 

effect of drying time and temperature on the 
nutritional properties, phytonutrients and other 
techno-functional properties of dried yam slices or 
flour can be studied in the future to get a detailed 
insight of Dioscorea pentaphylla to produce high-
quality dried slices for long-term preservation and 
high-end applications in the food and pharmaceutical 
sectors.  
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