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An improvement in spectrum usage is possible with the help of a cognitive radio network, which allows secondary users’ 
access to the unused licensed frequency band of a primary user. Thus, spectrum sensing is a fundamental concept in 
cognitive radio networks. In recent years, Cooperative spectrum sensing using machine learning has garnered a great deal of 
attention as a technique of enhancing sensing capability. In this study, K-means clustering is taken into consideration for the 
purpose of analyzing the effectiveness of cooperative spectrum sensing in a generalized α-κ-μ fading channel. The proposed 
approach is examined using receiver operating characteristic curves to determine its performance. The effectiveness of the 
proposed strategy is contrasted with that of the existing detection techniques such as Cooperating spectrum sensing based on 
energy detection and OR-fusion-based cooperative spectrum sensing for fading channels κ-μ, α-κ-μ. As demonstrated by 
results, the proposed method outshines an existing method in terms of comparison parameters, as determined by simulation 
results in the MATLAB version. 
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Introduction 
Since its introduction, Cognitive Radio (CR) has 

gained widespread recognition for its innovative 
approach toward solving the issue sacristy of radio 
spectrum by utilizing the available spectrum in 
Primary User (PU) bands safely and without 
interfering with the licensed users. A CR system's 
efficiency is contingent upon its ability to accurately 
locate spectrum opportunities. An Energy Detection 
(ED) approach for spectrum sensing is a common 
non-coherent detection strategy in the literature. Yet, 
it operates poorly in circumstances with low SNR, 
especially in multipath and shadowed conditions. 
Incorporating the spatial diversity of several spectrum 
sensors, this problem can be solved with Cooperative 
Spectrum Sensing (CSS).1 

The performance of CSS detection has been 
described for Rayleigh and Rician-lognormal fading 
channels for both decision fusion and data fusion 
procedures,2,3 but the OR-fusion rule outperforms all 
other hard combining procedures in multipath fading 
scenarios when perfect reporting channels are used. 
Soft combining strategies for cooperative spectrum 
sensing related to energy detection were investigated 

by Ma et al.4 Machine Learning (ML) techniques are 
commonly employed to classify patterns. The pattern 
is classified by the classifier using a feature vector 
derived from training data. Spectrum sensing could be 
viewed as a classification issue with two binary 
classes. In CSS, the estimated energy level for each 
Secondary User (SU) is referred as "feature vector," 
and the classifier classifies feature vector as "channel 
available class" or "channel unavailable class". The 
classifier must be trained before it can begin the 
online classification process. Supervised and 
unsupervised learning techniques are extensively 
utilized in ML.5 Unsupervised learning is carried out 
with unlabeled data, whereas supervised learning uses 
labelled data.6,7 

In wireless communication, multipath and 
shadowing affect radio propagation, hence 
appropriate fading expressions are required to 
characterize fading statistical patterns. To accurately 
characterize radio propagation, specialized fading 
channels κ-μ, η-μ are proposed.8,9 However, further 
work is required to accurately describe channels under 
complex scenarios. The α-κ-μ channel model with 
more fading parameters gives an accurate description 
of small-scale nonlinear Line of Sight (LOS) 
propagation, it approaches α-μ channel if k = 0 and κ-
μ when α = 2. The α-κ-μ channel remains more 
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precise than other fading models, including κ-μ, α-μ 
distributions.10 K-means clustering was used in this 
study to improve spectrum efficiency in a α-k-μ 
channel. Receiver Operating Characteristic (ROC) 
curves are used to model and compare impact of 
various system parameters on performance. 

System Model 
In this study, a CR network with M SUs and a PU 

is investigated. It was hypothesized that the PU 
alternates between active and inactive modes with 
probability Pon and Poff = (1െPon), Let Y be a variable 
that represents the state of PU activity, the inactive 
state of PU is represented by the value 
Y = 0, and the active state is represented by the value 
Y = 1. Based on this the availability of channels (Ac) 
is as follows 

𝐴 ൌ ቄ
1, 𝑌 ൌ 0

െ1, 𝑌 ൌ 1 … (1)

The value of Ac indicates whether the channel is 
available (positive value of Ac) or not (Negative 
value of Ac). 

The energy value of the PU signal is measured by 
each SU receiver and compared to a threshold value 
(υ) in CSS-based ED, If the measured energy values 
exceed or fall below the threshold, SU passes the data 
(Y* = 0/1) to the Fusion Center (FC), Predicted 
channel availability (Ac*) is decided by FC using a 
hard-combining rule.11,12 The Fig. 1 depicts the CSS-
based ED model. In the case of the K-means 
clustering approach,13 Each SU receiver measures the 
PU signal's energy value and transmits this 
information to the classifier. Based on this 
information, the availability of a channel is 
determined by the classifier. CSS based on k-means 
clustering is illustrated in Fig. 2 . 

The detection, false alarm probabilities are 
formulated as 

𝑃 ൌ 𝑃ሺ𝐴
∗ ൌ െ1|𝐴 ൌ െ1ሻ 

𝑃ி ൌ 𝑃ሺ𝐴
∗ ൌ െ1|𝐴 ൌ 1ሻ … (2)

System Analysis 
The ith sample of SU is expressed as 

𝑍ሺ𝑛ሻ ൌ ሺ𝑌 ൈ ℎሺ𝑛ሻ ൈ𝑊ሺ𝑛ሻሻ  𝑤ሺ𝑛ሻ     … (3) 

where, Y gives PU state activity, hi(n) is the nth 
channel coefficient sample at ith SU, W(n) is PU 

signal, wi(n) is nth sample of Additive White Gaussian 
Noise (AWGN). The normalized value of energy 
measured at ith SU can be computed as 

𝑋 ൌ ൫1
𝑁ൗ ൯∑ ሾ|𝑍ሺ𝑛ሻ|ሿଶ

ே
ୀଵ … (4)

Here, N is samples available in the window. 

CSS based on Energy Detection 
When used for energy detection, the test vectors 

can be assumed to be Gaussian distributed if the 
sample size is adequately large (N >> 1). For the 
AWGN channel, the following formulas can be used 
to estimate detection and false alarm probabilities 

 

𝑃ி
ா ൌ 𝑄

⎝

⎛𝑣 െ 1

ට2
𝑁ൗ ⎠

⎞ 

𝑃
ா ൌ 𝑄ቌ

௩ିሺଵାఊሻ

ට൫ଶ ேൗ ൯ሺଵାఊሻమ
ቍ … (5)

 

N is the number of samples that were taken, υ 

indicate threshold value, and  𝛾 ൌ 𝜎௦ଶ
𝜎ଶ
൘   is average

signal to noise power ratio (S/N). Since hi(n) in a 

Fig. 1 — CSS using an Energy detection method 

Fig. 2 — CSS using K-mean algorithm 
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fading channel change continuously, the detection 
probability for a fading channel is evaluated by 
averaging the PD value over the pdf of the channel’s 
S/N. 

𝑃ி
ா ൌ  𝑃

ா𝐹ሺ𝛾ሻ 𝑑𝛾
ஶ
     … (6) 

Given that there are M SUs, each of which sends 
one bit of data to the FC, the detection probability in 
OR logic can be calculated as 

𝑃ி
ைோ ൌ 1 െ ሺ1 െ 𝑃ி

ாሻெ … (7) 

CSS using K-mean Clustering 
The K-mean clustering applied to CSS is illustrated 

in Fig. 2, in which each SU communicates the 
computed energy value to the classifier,14 which 
constructs the energy vector based on this 
information. 

𝑋 ൌ ൣ𝑋ଵ,𝑋ଶ,𝑋ଷ, … …𝑋ெ൧
்

    … (8) 

where, X is a column vector with M SUs, this energy 
vector resembles a machine learning feature vector, 
therefore classifier connects it with channel 
availability Ac. 

The following phases are required to construct the 
classifier: 

Phase 1: To begin, acquire a sufficient amount of 
training energy vectors 

𝑋ത ൌ ሼ𝑋ଵ,𝑋ଶ,𝑋ଷ, … … . .𝑋ሽ … (9) 

where, 𝑋 ∈ 𝑅ெൈଵ, 𝑝 ൌ 1,2,3 … . .𝑃 are the training 
energy vectors. 

Phase 2: Now, this classifier is being trained to find 
the centroids of various clusters using k-mean 
strategy. 

Phase 3: once classifier is trained successfully, a 
test energy vector is applied to it to determine 
predicted channel availability Ac*. 

Phase 4: To calculate PFA and PD values, it is 
necessary to compare the values of Ac and Ac*. 

Unsupervised techniques like K-means split the set 
of unlabeled extracted features into K distinct 
clusters. Here the clusters are represented as 𝜑௦, 𝑠 ൌ
1,2,3, … . ,𝐾 and further assumed that cluster 𝜑௦ as a 
centroid of Cs. The centroid C1 is set as per the Eq. 
(10), Because cluster will simply include noise, 
therefore centroid can be computed offline, Cluster 1's 
centroid adjusted to a mean of X, with Y assigned to a 
value of 0. 

𝐶ଵ ൌ 𝐸ሾ𝑋 𝑌 ൌ 0⁄ ሿ … (10)

The expectation is represented by the letter E, the 
centroids of the remaining clusters can be calculated 
by taking the arithmetic average of the training 
vectors 𝜑௦ as 

𝐶௦ ൌ
ଵ

ሺఝೞሻ
∑ 𝑋∈ఝೞ … (11)

where, 𝑛ሺ. ሻ indicate cardinality parameter, the 𝜓 
(distortion) is defined for K-mean clustering 
technique in terms of total squared distances between 
clusters, from their associated centroids added over 
the number of clusters K, expressed as 

𝜓൫𝜑ଵ,𝜑ଶ,𝜑ଷ, … .𝜑,𝐶ଵ,𝐶ଶ, … …𝐶൯ ൌ
∑ ∑ ‖𝑋 െ 𝐶௦‖ଶ∈ఝೞ

௦ୀଵ … (12)

where, ‖. ‖is the p2-norm. Clustering is used in this 
study to attempt to decrease distortion; thus, 
optimization can be defined as 

minఝభ,ఝమ, ..….. ఝ಼
భ,మ, ..….. ಼

𝜓൫𝜑ଵ,𝜑ଶ,𝜑ଷ, … .𝜑,𝐶ଵ,𝐶ଶ,𝐶ଷ, … .𝐶൯

… (13) 

Algorithm: for CSS K-Means Clustering 
Input: K Total clusters 

𝐶ଵ ൌ 𝐸ሾ𝑋 𝑌 ൌ 0⁄ ሿ 
𝐶௦: Initialized randomly, where  𝑠 ൌ 2,3, … ,𝐾 
Vectors used for training are 

𝑋ത ൌ ሼ𝑋ଵ,𝑋ଶ,𝑋ଷ, … ,𝑋ሽ 

Output:𝐶௦,where  𝑠 ൌ 2,3, … ,𝐾 
1. Repeat
2. Every data point is assigned to the nearest

centroid 
to diminish𝜓൫𝜑ଵ,𝜑ଶ,𝜑ଷ, … .𝜑,𝐶ଵ,𝐶ଶ,𝐶ଷ, … .𝐶൯ 
3. Calculate the mean of allocated points to update

centroids. 

𝐶௦ ൌ
1

𝑛ሺ𝜑௦ሻ
 𝑋

∈ఝೞ
4. Until Convergence
After completing the training phase, we now know

the centroids of each cluster. The classification step 
begins by determining which class the test energy 
vector belongs to. For this, we employ a threshold 
value 𝛿ሺ𝛿  0ሻ to classify test energy vectors as 
specified in Eq. (14). 
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‖ିభ‖

୫୧୬ೞసభ,మ,య,..,಼‖ିೞ‖
 𝛿 … (14) 

If the preceding equation is satisfied, the test vector 
𝑋 is categorized as channel unavailable class; 
otherwise, it is categorized as channel accessible 
class.15 The threshold value 𝛿 is used to control the 
PFA and miss detection; in this case, the threshold 
value is used to control the PFA. 

The α-k-µ Channel 
This fading model can be used in wide range of 

situations to accurately reflect non-linear features of 
small-scale LOS.16 It may also be used to investigate 
the short-range and real-time sensing characteristics 
of spectrum sensing under extreme fading 
circumstances.17 An envelope pdf of α-k-µ model is 
expressed as 

ℎఈିିఓሺ𝜌ሻ ൌ
ఈఓሺଵାሻ

భశഋ
మ ఘ

ሺഋశభሻഀ
మ షభ


భ
మሺഋషభሻ௫ሺఓሻ

ൈ 𝑒𝑥𝑝൫െ𝜇𝜌ఈሺ1 

𝑘ሻ൯ ൈ 𝐼ఓିଵ ቀඥሺ1  𝑘ሻ𝑘𝜌
ఈ
ଶൗ 2𝜇ቁ … (15) 

In the preceding equation, α denotes the non-linear 
propagation medium features, k denotes the overall 
power ratios of the dominant and scattering waves, µ 
denotes the multipath fading components, I is 
modified first-order Bessel function. 

The α-κ-μ channel's pdf SNR is given by the 
formula: 

𝑓ఈିିఓሺ𝜌ሻ ൌ
ቈఈఓ

భషഋ
మ ሺଵାሻ

భశഋ
మ 

ଶ௫ሺఓሻ
ൈ

ఊ
ሺഋశభሻഀ

ర షభ

ఊ
షഀ
ర ሺభశഋሻ

ൈ

𝑒𝑥𝑝 ൬െ
ఊ
ഀ
మൗ

ሺఊഥሻ
ഀ
మൗ
ൈ ሺ1  𝑘ሻ𝜇൰ ൈ

𝐼ఓିଵ ඥሺ1  𝑘ሻ𝑘2𝜇
ఊ
ഀ
రൗ

ሺఊഥሻ
ഀ
రൗ
൨ … (16)

In the above equation, SNR and Average SNR are 
denoted with 𝛾 and ሺ�̅�ሻ  respectively. 

The α-k-µ channel is a generalized model; various 
renowned fading characteristic like Nakagami-m, k-µ 
& its extreme distribution, Rician, Rayleigh, α-µ and 
one-sided gaussian are regarded as distinct cases of 

this model, the ranges of α, k, and µ are shown in 
Table 1.(18,19) 

Results and Discussion 
For the simulation study, 1000 energy samples 

were used (half for testing and half for training), 
BPSK modulation is used for PU transmission with 
Pon= 0.5, the α-k-µ channel is used between PU and 
SUs. The feature vectors (energy estimates) from the 
SU node are used to train the classifier. The unlabeled 
feature vector that was used to train the classifier can 
be seen in Fig. 3. N = 500 samples and M = 2 are used 
to construct a feature vector with an average SNR of 
െ12 dB. According to the results of the simulation, 
determining the class of the feature vector is 
challenging in this case. Once trained, the classifier 
can cluster the data according to the labels provided. 
As can be seen in Fig. 4, data has been grouped into 
two classes, one for channels that are available and 
one for channels that aren't. 

The k-means algorithm-based CSS performs well 
in the α-k-µ channel with α = 1.25, k→0 & µ = 3, 
when SNR on an average of െ12 dB, N is 500, and K 
is 3 illustrated in Fig. 5. Conventional detection 
schemes like OR20 and energy detection21,22 are 
outperformed by the k-means based CSS technique. 
The k-means based CSS method and traditional 

Table 1 — fading characteristics of Nakagami-m, Rician, Rayleigh, k-µ, k-µ extreme distributions, one-sided gaussian and α-µ 

𝛼 െ 𝑘 െ 𝜇 Rician Rayleigh One-sided Gaussian Nakagami-m 𝛼 െ 𝜇 𝑘 െ 𝜇 𝑘 െ 𝜇 
Extreme 

𝛼 2  2  2  2  𝛼  0 2  2  
𝑘 3 𝑘 → 0 𝑘 → 0 𝑘 → 0 0 𝑘  0 𝑘 → ∞ 
𝜇 1 1 0.5  3  𝜇  0 𝜇  0 𝜇 → 0 

Fig. 3 — Training the classifier on unlabeled features 
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detection methods have been used the same 
environmental parameter values. As illustrated in Fig. 
5, When false alarm probability grows, the detection 
probability increases rapidly in k-mean based CSS, 
ensuring that the second user receives precise channel 
availability information. On the other hand, 
conventional detection approaches have consistently 
failed to deliver reliable channel information. As a 
result, a second user cannot access the channel. 

The k-means based CSS and conventional 
detection methods performance are compared in α-k-µ 
(α = 1.25, k ≈ 0, µ = 3) and k-µ (k ≈ 0, µ = 3) 
channels, when SNR of െ12 dB, N is 500, and K is 2. 
The Fig. 6 depiction of the plot comparing false alarm 
probability to the chance of a successful detection 

makes it abundantly evident that for α-k-µ fading 
model CSS technique based on k-means clustering 
has a higher detection probability than the k-µ fading 
channel does. Conventional detection methods work 
better when k-µ channel is used instead of α-k-µ 
fading model. 

The performance of CSS based on k-means and 
conventional approaches is examined in Fig. 7 for 
three unique circumstances of α-k-µ fading such as: 
Nakagami-m (α = 2, k ≈ 0, µ = 3), Rayleigh (α = 2, k 
→ 0, µ = 1) and Rician (α is 2, k = 3 and µ = 1), when
average SNR of െ12 dB, N is 500, and K is 2. In the
case of k-means based CSS, the Rician channel has a

Fig. 4 — Clustered data after training the classifier 

Fig. 5 — Performance evaluation of ROC in α-k-µ fading channel
for CSS using K-means, Energy detection, and OR-combining for
M = 2 

Fig. 6 — Performance comparison of CSS using K-means, Energy 
detection, and OR fusion in α-k-µ, k-µ channels with M = 2 

Fig. 7 — Performance comparison of K-means based CSS, 
Energy detection, and OR combining in an α-k-µ channel under 
different fading scenarios with M = 2 
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higher detection probability than other channels. In 
conventional methods, the Nakagami-m channel 
outperforms other channels. 

The performance k-mean based CSS for various 
cluster values under channels α-k-µ and k-µ is 
depicted in Fig. 8. From the graph it is evident that 
detection probability increases as the value of 
K increases in both situations, although the 
α-k-µ channel provides better results than the k-µ 
channel. 

Conclusions 
The advent of Industry 4.0 and its extensive 

interconnectedness places heavy demands on the 
available spectrum resources, leading to a shortage of 
spectrum. Cognitive Radio (CR) is a potential 
technique for enhancing spectrum use by detecting 
spectrum holes. The cooperative spectrum sensing 
performance in a generalized α-k-µ channel is 
analyzed using k-means clustering approach. 
According to simulation results, K-means-based CSS 
in α-k-µ fading channel significantly improves ROC 
performance when compared to energy detection-
based CSS and OR-fusion-based CSS. The 
effectiveness of CSS based on k-means is also studied 
using the k-µ, α-k-µ fading channels for various 
cluster values. As the value K increases, α-k-µ fading 
channel performs significantly better than k-µ 
channel. In light of the simulation findings, it is clear 
that the suggested method efficiently detects spectrum 
holes, which is critical in the case of an Industry 4.0 
application. 
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